sabato 27 novembre 2021

# gst: apropos of hybrid nanostructures, the Kondo cloud effects on 'impurities' (inside superconductors).

<< when a metal contains magnetic impurities, conduction electrons can form a screening cloud, which essentially screens the impurity's spin. This physical phenomenon is known as the Kondo effect; thus, the resulting cloud is referred to as a Kondo cloud. >>

<< While the behavior of the Kondo cloud in normal systems is well-understood, its properties in the presence of superconducting materials have not yet been explored in depth. So far, most physicists have believed that the screening of impurity spins in hybrid nanostructures takes place predominantly in the screened, rather than in the unscreened, quantum phase. >>

<< The system we considered exhibits a quantum phase transition when the ground state changes between the Kondo state and the so-called Shiba state, (..) Up to now, it was believed that the screening occurs in the Kondo phase. Quite strikingly, we have however, demonstrated that the Kondo cloud exists also in the unscreened phase. >>  Ireneusz Weymann.

Ingrid Fadelli. Study predicts the behavior of a Kondo cloud in a superconductor. Phys.org. Nov  23, 2021. 


Catalin Pascu Moca, Ireneusz Weymann, et al. Kondo Cloud in a Superconductor.  Phys. Rev. Lett. 127, 186804. Oct 27, 2021.


keywords: gst, nano, hybrid nanostructure, superconductor, transition, impurity, Kondo cloud, Kondo effect


martedì 23 novembre 2021

# gst: apropos of transitions, when collisions can induce coherent dynamics.

<< In this paper (AA)  demonstrate a route to develop coherence in a system of non-driven oscillators. Here, the coherence is brought about via physical collisions through which the oscillators exchange energy. While coherence in the classical situations occurs due to sustained coupling terms in the dynamical equations, collision induced coherence is enabled solely through strong interactions that are of intermittent nature! >>

<< Very few studies (..) have attempted to study the contact dynamics during a collision. (AA) have generalized the framework of these experiments to demonstrate the collision-induced development of coherent dynamics in the simple one-dimensional arrangement of balls known as the Newton’s cradle. >>

Ayanesh Maiti, Shankar Ghosh. Collision-induced coherent dynamics. arXiv:2111.08902v1 [nlin.CD]. Nov 17, 2021. 


keywords: gst, transitions, oscillation, collision 



sabato 20 novembre 2021

# gst: predict the wetting of the wedge; why do the teapots always drip?

<<  The "teapot effect" has been threatening spotless white tablecloths for ages: if a liquid is poured out of a teapot too slowly, then the flow of liquid sometimes does not detach itself from the teapot, finding its way into the cup, but dribbles down at the outside of the teapot. >>

<< This phenomenon has been studied scientifically for decades—now a research team at TU Wien has succeeded in describing the "teapot effect" completely and in detail with an elaborate theoretical analysis and numerous experiments: An interplay of different forces keeps a tiny amount of liquid directly at the edge, and this is sufficient to redirect the flow of liquid under certain conditions. >>

<< Although this is a very common and seemingly simple effect, it is remarkably difficult to explain it exactly within the framework of fluid mechanics,  (..) We have now succeeded for the first time in providing a complete theoretical explanation of why this drop forms and why the underside of the edge always remains wetted, >>  Bernhard Scheichl.

<< The sharp edge on the underside of the teapot beak plays the most important role: a drop forms, the area directly below the edge always remains wet. The size of this drop depends on the speed at which the liquid flows out of the teapot. If the speed is lower than a critical threshold, this drop can direct the entire flow around the edge and dribbles down on the outside wall of the teapot. >>

<< The mathematics behind it is complicated—it is an interplay of inertia, viscous and capillary forces. The inertial force ensures that the fluid tends to maintain its original direction, while the capillary forces slow the fluid down right at the beak. The interaction of these forces is the basis of the teapot effect. However, the capillary forces ensure that the effect only starts at a very specific contact angle between the wall and the liquid surface. The smaller this angle is or the more hydrophilic (i.e. wettable) the material of the teapot is, the more the detachment of the liquid from the teapot is slowed down. >>

<< Interestingly, the strength of gravity in relation to the other forces that occur does not play a decisive role. Gravity merely determines the direction in which the jet is directed, but its strength is not decisive for the teapot effect. The teapot effect would therefore also be observed when drinking tea on a moon base, but not on a space station with no gravity at all. >>️

Why teapots always drip. Vienna University of Technology. Nov 08, 2021


Scheichl, B., Bowles, R., & Pasias, G. (2021). Developed liquid film passing a smoothed and wedge-shaped trailing edge: Small-scale analysis and the ‘teapot effect’ at large Reynolds numbers. Journal of Fluid Mechanics, 926, A25. doi: 10.1017/jfm.2021.612. Sep 8, 2021. 


keywords: gst, teapot effect, interfacial flows, thin films, boundary layers, Reynolds number, viscosity, viscous–inviscid interaction 

venerdì 19 novembre 2021

# gst: apropos of oscillations, viscous streaming around an immersed microfeature (e.g. a bubble)

<< Viscous streaming refers to the rectified, steady flows that emerge when a liquid oscillates around an immersed microfeature, typically a solid body or a bubble. The ability of such features to locally concentrate stresses produces strong inertial effects to which both fluid and immersed particles respond within short length (O(100) microns) and time (milliseconds) scales, rendering viscous streaming arguably the most efficient mechanism to exploit inertia at the microscale. >>️

(AA) << demonstrate that a multi-curvature approach in viscous streaming dramatically extends the range of accessible flow topologies. (They) show that numerically predicted, but never experimentally observed, streaming flows can be physically reproduced, computationally engineered, and in turn used to enhance particle manipulation, filtering and separation in compact, robust, tunable and inexpensive devices. >>️

Yashraj Bhosale, Giridar Vishwanathan, et al. Multi-curvature viscous streaming: flow topology and particle manipulation. arXiv: 2111.07184v1 [physics.flu-dyn]. Nov 13, 2021.


keywords: gst, viscosity, viscous streaming, bubble, oscillations, liquid oscillations, flanking vortex, particle manipulation 

giovedì 18 novembre 2021

# gst: apropos of Cake-cutting, the Art of dividing a cake by countably many cuts

<< Cake-cutting is a playful name for the fair division of a heterogeneous, divisible good among agents, a well-studied problem at the intersection of mathematics, economics, and artificial intelligence. The cake-cutting literature is rich and edifying. However, different model assumptions are made in its many papers, in particular regarding the set of allowed pieces of cake that are to be distributed among the agents and regarding the agents' valuation functions by which they measure these pieces. >>️

A simple example proposed by AA  <<  shows that a formal mathematical approach to cake-cutting needs to address questions like:

(o) Are (open, closed, half-open) intervals the only possible pieces of cake? 

(o) Do we allow for finitely many or infinitely many cuts (a “cut” being the split of any subset of [0,1] at a single point)? 

(o) Which properties should a valuation function have, and how does it interact with the family of admissible pieces of cake?  >>

<< Among the questions (AA) have tried to answer are: 

(i) Which subsets of [0,1] should be considered as pieces of cake? Only finite unions of intervals or more general sets? 

(ii) If valuation functions are considered as set-functions as studied in measure theory, should they be σ-additive or only finitely additive? 

(iii) more ...
>>️
AA << have surveyed the existing rich literature on cake-cutting algorithms and have identified the most commonly used choices of sets consisting of what is allowed as pieces of cake. After showing that these five most commonly used sets are distinct from each other, (they) have discussed them in comparison. >>️

Peter Kern, Daniel Neugebauer, et al. Cutting a Cake Is Not Always a "Piece of Cake": A Closer Look at the Foundations of Cake-Cutting Through the Lens of Measure Theory. arXiv: 2111.05402v1 [cs.GT]. Nov 9, 2021. 


keywords: gst, cake, cake-cutting, math.

venerdì 12 novembre 2021

# gst: a screw mechanism to separate realistic racemic mixtures by local vorticity

AA developed << an explanatory "screw"  model for predicting the shear-flow separation of enantiomers >>

<< Enantiomers of chiral molecules are non-superposable mirror images with the same structural formula. In achiral environments, enantiomers have identical physical and chemical properties, and this prevents separation by classical methods. >>

<< A screw is a simple chiral object that couples rotation around one axis with displacement along that axis. This displacement is perpendicular to the plane of rotation and is characterized by the screw’s pitch (or lead). Here (it is defined) pitch (P) as the perpendicular distance advanced by a screw in a 2π-revolution. In a lab-fixed frame, left-and right-handed screws have pitches with the same magnitude, but with flipped signs, rotating in opposite directions to do the same task. This concept can be easily extended to chiral molecules by considering the translation-rotation coupling tensor (..). In a medium which induces rotation of molecules (as in a vortex flow), chiral molecules will translate in opposite directions. As a consequence, this asymmetry may enable the resolution of the enantiomers. >>

Thus  a << competition model and continuum drift diffusion equations are developed to predict separation of realistic racemic mixtures. (..) Additionally, (AA) find that certain achiral objects can also exhibit a non-zero molecular pitch. >>

<< Although it has been used << shear flow as the source to rotate the chiral molecules and achieve separation, it may be possible to use external forces to rotate the enantiomers >>️
Duraes A, Gezelter JD. Separation of Enantiomers through Local Vorticity: A Screw Model Mechanism. ChemRxiv. Cambridge: Cambridge Open Engage; Vers 1. doi: 10.33774/ chemrxiv-2021-196zw. Oct 04, 2021. 


keywords: gst, vortices, separation, enantiomeric separation, racemic mixture, screw mechanism, translation-rotation coupling, transitions.

lunedì 8 novembre 2021

# geo: apropos of oscillations, a 'true polar wander' (TPW); Earth tip on its side 84 Ma ago.

<< It has been debated for the past few decades whether the outer, solid shell of the Earth can wobble about, or even tip over relative to the spin axis. Such a shift of Earth is called "true polar wander," (TPW) but the evidence for this process has been contentious. New research (..) provides some of the most convincing evidence to date that such planetary tipping has indeed occurred in Earth's past. >>️

<< The Earth is a stratified ball, with a solid metal inner core, a liquid metal outer core, and a solid mantle and overriding crust at the surface which we live on. All of this is spinning like a top, once per day. Because the Earth's outer core is liquid, the solid mantle and crust are able to slide around on top of it.  >>
Did the Earth tip on its side 84 million years ago? Tokyo Institute of Technology. Oct 18, 2021. 


<< a new high-resolution palaeomagnetic record from two overlapping stratigraphic sections in Italy (..) provides evidence for a ~12° TPW oscillation from 86 to 78 Ma. This observation represents the most recent large-scale TPW documented and challenges the notion that the spin axis has been largely stable over the past 100 million years. >>️

Mitchell, R.N., Thissen, C.J.,  et al. A Late Cretaceous true polar wander oscillation. Nat Commun 12, 3629. doi: 10.1038/ s41467-021-23803-8. June 15, 2021. 


keywords: gst, geo, geodynamics, geophysics, palaeomagnetism, oscillations, wobble, true polar wander, tpw