lunedì 8 febbraio 2021

# gst; apropos of hair that can be combed, some perturbation fields, along the event horizon of extreme black holes, seem to evolve in time indefinitely

 <<  black holes can be fully characterized by only three physical quantities: their mass, spin and charge. Since they have no additional "hairy" attributes to distinguish them, black holes are said to have "no hair"—Black holes of the same mass, spin, and charge are exactly identical to each other. >> 

AA << discovered that a special kind of black hole violates black hole uniqueness, the so-called "no hair" theorem. Specifically, the team studied extremal black holes—holes that are "saturated" with the maximum charge or spin they can possibly carry. They found that there is a quantity that can be constructed from the spacetime curvature at the black hole horizon that is conserved, and measurable by a distant observer. Since this quantity depends on how the black hole was formed, and not just on the three classical attributes, it violates black hole uniqueness. This quantity constitutes "gravitational hair" and potentially measurable by recent and upcoming gravitational wave observatories like LIGO and LISA. >>

<< even though external perturbations of extreme black holes decay as they do also for regular black holes, along the event horizon certain perturbation fields evolve in time indefinitely. >>

<< The uniqueness theorems assume time independence. But the Aretakis phenomenon explicitly violates time independence along the event horizon. This is the loophole through which the hair can pop out and be combed at a great distance by a gravitational wave observatory, >> Lior Burko.

Extreme black holes have hair that can be combed. Theiss Research. Jan 26, 2021.


Lior M. Burko, Gaurav Khanna, Subir Sabharwal. Scalar and gravitational hair for extreme Kerr black holes. Phys. Rev. D 103, L021502. Jan 26, 2021.



Nessun commento:

Posta un commento

Nota. Solo i membri di questo blog possono postare un commento.