sabato 13 agosto 2022

# gst: how a synchronization could emerge from chaotic activities

<< Can we find order in chaos? Physicists have shown, for the first time that chaotic systems can synchronize due to stable structures that emerge from chaotic activity. These structures are known as fractals, shapes with patterns which repeat over and over again in different scales of the shape. As chaotic systems are being coupled, the fractal structures of the different systems will start to assimilate with each other, taking the same form, causing the systems to synchronize. >>️

<< If the systems are strongly coupled, the fractal structures of the two systems will eventually become identical, causing complete synchronization between the systems. These findings help us understand how synchronization and self-organization can emerge from systems that didn't have these properties to begin with, like chaotic systems and biological systems. >>️

Topological synchronization of chaotic systems. Bar-Ilan University. Apr 22, 2022. 

<< chaotic synchronization has a specific trait in various systems, from continuous systems and discrete maps to high dimensional systems: synchronization initiates from the sparse areas of the attractor, and it creates what (AA) termed as the ‘zipper effect’, a distinctive pattern in the multifractal structure of the system that reveals the microscopic buildup of the synchronization process. >>️

Lahav, N., Sendina-Nadal, I., et al. Topological synchronization of chaotic systems. Sci Rep 12, 2508. doi: 10.1038/ s41598-022-06262-z. Feb 15, 2022. 

Also

keyword 'self-assembly' in FonT


Keywords: gst, self-assembly, self-organization, fractals, topological synchronization, zipper effect, chaos, chaotic systems







Nessun commento:

Posta un commento

Nota. Solo i membri di questo blog possono postare un commento.