AA << ️present a jamming diagram for two-dimensional bidisperse granular systems, capturing two distinct jamming transitions. The first occurs as large particles form a jammed structure, while the second, emerging at a critical small-particle concentration, 𝑋*_S ≈0.21, and size ratio, 𝛿*≈0.25, involves small particles jamming into the voids of the existing large-particle structure upon further compression. >>
<< ️Below this threshold, small particles fill voids within the large-particle network, increasing packing density. Beyond this point, excess small particles disrupt efficient packing, resulting in looser structures. These results, consistent with previous three-dimensional studies, demonstrate that the second transition occurs at a well-defined point in the (𝑋_S,𝛿) plane, independent of dimensionality, likely driven by the geometric saturation of available space around particles, void closure, and structural arrangement. >>
<< ️The second transition reveals that jamming in mixtures of differently sized particles does not occur through a single, unified process. Instead, it can involve multiple, distinct transitions, each associated with a specific particle size and contributing uniquely to the emergence of rigidity through excluded area effects and spatial organization. >>
Juan C. Petit, Matthias Sperl. Additional jamming transition in two-dimensional bidisperse granular packings. Phys. Rev. Research 7, L022073. Jun 20, 2025.
Also: particle, jamming, disorder, transition, in https://www.inkgmr.net/kwrds.html
Keywords: gst, particles, granular packing, jamming, disorder, transitions.