AA << re-examine the turbulent boundary layers developing over surfaces with spanwise heterogeneous roughness of various roughness wavelengths 0.32≤S/δ¯¯≤3.63, where S is the width of the roughness strips and δ¯¯ is the spanwise-averaged boundary-layer thickness. >>
<< The heterogeneous cases induce counter-rotating secondary flows, and these are compared to the large-scale turbulent structures that occur naturally over the smooth wall. Both appear as meandering elongated high- and low-momentum streaks in the instantaneous flow field. >>
<< Results suggest that the secondary flows might be spanwise-locked turbulent structures, with S/δ¯¯ governing the strength of the turbulent structures and possibly the efficacy of the surface in locking the structures in place (most effective when S/δ¯¯≈1). >>
<< Conditional averages of the fluctuating velocity fields of both spanwise heterogeneous and smooth wall cases result in structures that are strongly reminiscent of the streak-vortex instability model. (proposed in Jeong et al.,1997) >>
<< One outstanding question that remains unanswered in the present study is the cause of the prominent meandering of the turbulent structures, which is only observed when S/δ¯¯≈1 >>️️
️
Dea Daniella Wangsawijaya, Nicholas Hutchins. Investigation of unsteady secondary flows and large-scale turbulence in heterogeneous turbulent boundary layers. arXiv: 2110.02268v1 [physics.flu-dyn]. Oct 5, 2021.
keywords: gst, fluid dynamics, vortices, vortex instability, streak-vortex instability, roughness, heterogeneous roughness, turbulence, turbulent boundary layers.
Nessun commento:
Posta un commento
Nota. Solo i membri di questo blog possono postare un commento.