Translate

Visualizzazione post con etichetta geo. Mostra tutti i post
Visualizzazione post con etichetta geo. Mostra tutti i post

lunedì 8 novembre 2021

# geo: apropos of oscillations, a 'true polar wander' (TPW); Earth tip on its side 84 Ma ago.

<< It has been debated for the past few decades whether the outer, solid shell of the Earth can wobble about, or even tip over relative to the spin axis. Such a shift of Earth is called "true polar wander," (TPW) but the evidence for this process has been contentious. New research (..) provides some of the most convincing evidence to date that such planetary tipping has indeed occurred in Earth's past. >>️

<< The Earth is a stratified ball, with a solid metal inner core, a liquid metal outer core, and a solid mantle and overriding crust at the surface which we live on. All of this is spinning like a top, once per day. Because the Earth's outer core is liquid, the solid mantle and crust are able to slide around on top of it.  >>
Did the Earth tip on its side 84 million years ago? Tokyo Institute of Technology. Oct 18, 2021. 


<< a new high-resolution palaeomagnetic record from two overlapping stratigraphic sections in Italy (..) provides evidence for a ~12° TPW oscillation from 86 to 78 Ma. This observation represents the most recent large-scale TPW documented and challenges the notion that the spin axis has been largely stable over the past 100 million years. >>️

Mitchell, R.N., Thissen, C.J.,  et al. A Late Cretaceous true polar wander oscillation. Nat Commun 12, 3629. doi: 10.1038/ s41467-021-23803-8. June 15, 2021. 


keywords: gst, geo, geodynamics, geophysics, palaeomagnetism, oscillations, wobble, true polar wander, tpw

lunedì 2 marzo 2020

# gst: continuous, (not intermittent, perpetual) tremors and slips ...

<< Applying deep learning to seismic data has revealed tremor and slip occur at all times—before and after known large-scale slow-slip earthquakes—rather than intermittently in discrete bursts, as previously believed. Even more surprisingly, the machine learning generalizes to other tectonic environments, including the San Andreas Fault. >>

Machine learning reveals earth tremor and slip occur continuously, not intermittently. Los Alamos National Laboratory.  Feb 27, 2020.

https://m.phys.org/news/2020-02-machine-reveals-earth-tremor-intermittently.html

<< Slow earthquakes cyclically load fault zones and have been observed preceding major earthquakes on continental faults as well as subduction zones. Slow earthquakes and associated tremor are common to most subduction zones, taking place downdip from the neighboring locked zone where megathrust earthquakes occur. In the clearest cases, tremor is observed in discrete bursts that are identified from multiple seismic stations. By training a convolutional neural network to recognize known tremor on a single station in Cascadia, we detect weak tremor preceding and following known larger slow earthquakes, the detection rate of these weak tremors approximates the slow slip rate at all times, and the same model is able to recognize tremor from different tectonic environments with no further training. >>

Bertrand Rouet-Leduc, Claudia Hulbert, et al. Probing Slow Earthquakes With Deep Learning. Geophysical Research Letters. Volume 47, Issue 4. doi: 10.1029/2019GL085870. Jan 23, 2020.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL085870