Translate

Visualizzazione post con etichetta GST. Mostra tutti i post
Visualizzazione post con etichetta GST. Mostra tutti i post

venerdì 23 maggio 2025

# gst: toy model of turbulent shear flow using vortons.

AA << introduce a toy model for shear flows, exploiting the spatial intermittency and the scale separation between large-scale flows and small-scale structures. The model is highly sparse, focusing exclusively on the most intense structures, which are represented by vortons—dynamically regularized quasisingularities that experience rapid distortion from the large-scale shear. The vortons, in turn, influence the large-scale flow through the subgrid stress tensor. >>

<< Despite its simplicity, the model displays an interesting transition between two distinct regimes: (i) a laminar regime, where dissipation is entirely attributed to the large-scale flow and the vortons dynamics is essentially diffusive, and (ii) a turbulent regime, in which most of the dissipation arises from the vortons. These regimes correspond to different scalings of dissipation and the Grashof number as functions of the Reynolds number, with power-law relationships that resemble those observed in classical turbulence. >>

Wandrille Ruffenach, Lucas Fery, Bérengère Dubrulle. Toy model of turbulent shear flow using vortons. Phys. Rev. Fluids 10, 054601. May 1, 2025.

arXiv:2501.05779v2 [physics.flu-dyn]. 

Also: turbulence, intermittency, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence, intermittency, transitions, vortons

mercoledì 21 maggio 2025

# gst: accelerated first detection in discrete-time quantum walks using sharp restarts.

<< Restart is a common strategy observed in nature that accelerates first-passage processes, and has been extensively studied using classical random walks. In the quantum regime, restart in continuous-time quantum walks (CTQWs) has been shown to expedite the quantum hitting times [Phys. Rev. Lett. 130, 050802 (2023)]. >>

 Here, AA << study how restarting monitored discrete-time quantum walks (DTQWs) affects the quantum hitting times. (They) show that the restarted DTQWs outperform classical random walks in target searches, benefiting from quantum ballistic propagation, a feature shared with their continuous-time counterparts. >>

Kunal Shukla, Riddhi Chatterjee, C. M. Chandrashekar. Accelerated first detection in discrete-time quantum walks using sharp restarts. Phys. Rev. Research 7, 023069. Apr 21, 2025.

Also: walk, random, network, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, networks, randomness, walk, random walk, quantum walk, stochasticity, sharp restart.

martedì 20 maggio 2025

# gst: biased random walks on networks with stochastic resetting.

<< This study explores biased random walk dynamics with stochastic resetting on general networks. (AA) show that the combination of biased random walks and stochastic resetting makes significant contributions by analyzing the search efficiency. (They) derive two analytical expressions for the stationary distribution and the mean first passage time, which are related to the spectral representation of the probability transition matrix of a biased random walk without resetting. These expressions can be used to determine the capacity of a random walker to reach the specific target and probe a finite network. >>

AA << apply the analytical results to two types of networks, pseudofractal scale-free webs and T-fractals, which are constructed through an iterative process. (They) also extend a strategy to explore other complex structure networks or larger networks by leveraging the spectral properties. >>

Anlin Li, Xiaohan Sun. Biased random walks on networks with stochastic resetting. Phys. Rev. E 111, 054309. May 16, 2025.

Also: walk, random, network, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, networks, randomness, random walk, stochasticity, stochastic resetting.

venerdì 16 maggio 2025

# gst: emergent scattering regimes in disordered metasurfaces near critical packing.


<< Disordered metasurfaces provide a versatile platform for harnessing near- and far-field scattered light. Most research has focused on either particulate topologies composed of individual, well-identified metaatoms or, to a lesser extent, semi-continuous aggregate topologies without well identified inclusions. >>

Here, AA << uncover an intermediate critical packing regime characterized by metasurface morphologies in which a significant fraction of metaatoms begin to connect. (They) experimentally demonstrate that, at this threshold, the properties of the scattered light abruptly change and interpret this change as a marked transition in the statistics of the photon density of states. >>

<< Unlike percolation metal films, this transition affects not only the specular but also the diffuse components of the scattered light in a profound way. (AA)  results introduce critical packing topologies as a novel design strategy for manipulating the spectral and angular characteristics of light using ultrathin optical coatings. Emergent functionalities include color shifts in diffuse light driven by multiple scattering and surface whitening, >>

Miao Chen, Adrian Agreda, et al. Emergent scattering regimes in disordered metasurfaces near critical packing. arXiv: 2505.02244v1 [physics.optics]. May 4, 2025.

Also: disorder & fluctuations, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, disorder, fluctuations, transitions, disordered metasurfaces, ultrathin optical coatings, near- far- field scattered light, critical packing regime.

mercoledì 14 maggio 2025

# gst: elasticity of fibers prefers the chaos of turbulence.

<< The dynamics of fibers, modeled as a sequence of inertial beads linked via elastic springs, in turbulent flows is dictated by a nontrivial interplay of inertia and elasticity. Such elastic, inertial fibers preferentially sample a three-dimensional turbulent flow in a manner that is qualitatively similar to that in two dimensions [R. Singh et al., Phys. Rev. E 101, 053105 (2020)]. >>

<< Both these intrinsic features have competing effects on fiber dynamics: Inertia drives fibers away from vortices while elasticity tends to trap them inside. However, these effects swap roles at very large values. A large inertia makes the fibers sample the flow more uniformly while a very large elasticity facilitates the sampling of straining regions. >>

<< This complex sampling behavior is further corroborated by quantifying the chaotic nature of sampled flow regions. This is achieved by evaluating the maximal Lagrangian Lyapunov Exponents associated with the flow along fiber trajectories. >>

Rahul K. Singh. Elasticity of fibers prefers the chaos of turbulence. Phys. Rev. E 111, L053101. May 5, 2025.

Also: elastic, turbulence, chaos, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, elasticity, turbulence, chaos, transitions

martedì 13 maggio 2025

# gst: hyperchaos and complex dynamical regimes in N-d neuron lattices.


AA << study the dynamics of N-dimensional lattices of nonchaotic Rulkov neurons coupled with a flow of electrical current. (They) consider both nearest-neighbor and next-nearest-neighbor couplings, homogeneous and heterogeneous neurons, and small and large lattices over a wide range of electrical coupling strengths. >>

<< As the coupling strength is varied, the neurons exhibit a number of complex dynamical regimes, including unsynchronized chaotic spiking, local quasi-bursting, synchronized chaotic bursting, and synchronized hyperchaos. >>

<< For lattices in higher spatial dimensions, (AA) discover dynamical effects arising from the ``destructive interference'' of many connected neurons and miniature ``phase transitions'' from coordinated spiking threshold crossings. In large two- and three-dimensional neuron lattices, (They) observe emergent dynamics such as local synchronization, quasi-synchronization, and lag synchronization. >>

<< These results illustrate the rich dynamics that emerge from coupled neurons in multiple spatial dimensions, highlighting how dimensionality, connectivity, and heterogeneity critically shape the collective behavior of neuronal systems. >>

Brandon B. Le, Dima Watkins. Hyperchaos and complex dynamical regimes in N-dimensional neuron lattices. arXiv: 2505.03051v1 [nlin.CD]. May 5, 2025.

Also: brain, network, behavior, chaos, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, brain, network, behavior, cooperation, cooperative behavior, chaos, hyperchaos, transitions, phase transitions, transition thresholds,  synchrony, dimensionality, topology of connectivity, intermittent bursting activity, interference, destructive interference.

lunedì 12 maggio 2025

# gst: overcoming overly simplistic representations, chaos and regularity in an anisotropic soft squircle billiard.


<< A hard-wall billiard is a mathematical model describing the confinement of a free particle that collides specularly and instantaneously with boundaries and discontinuities. >>

<< Soft billiards are a generalization that includes a smooth boundary whose dynamics are governed by Hamiltonian equations and overcome overly simplistic representations. >>

AA << study the dynamical features of an anisotropic soft-wall squircle billiard. This curve is a geometric figure that seamlessly blends the angularity of a square with the smooth curves of a circle. (AA) characterize the billiard's emerging trajectories, exhibiting the onset of chaos and its alternation with regularity in the parameter space. (They) characterize the transition to chaos and the stabilization of the dynamics by revealing the nonlinearity of the parameters (squarness, ellipticity, and hardness) via the computation of Poincaré surfaces of section and the Lyapunov exponent across the parameter space. >>

AA << expect (Their) work to introduce a valuable tool to increase understanding of the onset of chaos in soft billiards. >>

A. González-Andrade, H. N. Núñez-Yépez, M. A. Bastarrachea-Magnani. Chaos and Regularity in an Anisotropic Soft Squircle Billiard. arXiv: 2504.20270v1 [nlin.CD]. Apr 28, 2025.

Also: billiard, chaos, particle, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, billiard, soft billiard, soft-wall squircle billiard, particles, smooth boundary,  specular collisions, transitions, chaos

sabato 10 maggio 2025

# gst: apropos of critical transitions, a new approach to extreme events.

FIG. 1. Dynamics of excitable complex networks [coupling topologies: random (RN); small-world (SW); scale-free (SF); all-to-all (complete; CP)]. 

<< Unexpected and often irreversible shifts in the state or the dynamics of a complex system often accumulate in extreme events with likely disastrous impact on the system and its environment. Detection, understanding, and possible prediction of such critical transitions are thus of paramount importance across a variety of scientific fields. >>

<< The rather modest improvement achieved so far may be due previous research mostly concentrating on either particular subsystems, considered to be of vital importance for the generating mechanism of a critical transition, or on the system as a whole. These approaches only rarely take into account the intricate, time-dependent interrelatedness of subsystems that can essentially determine emerging behaviors underlying critical transitions. >> 

AA << uncover subsystems, network vertices, and the interrelatedness of certain subsystems, network edges, as tipping elements in a networked dynamical system, forming a time-evolving tipping subnetwork. (They)  demonstrate the existence of tipping subnetworks in excitable complex networks and in human epileptic brains. These systems can repeatedly undergo critical transitions that result in extreme events. >>

AA << findings reveal that tipping subnetworks encapsulate key properties of mechanisms involved in critical transitions. >>

Timo Bröhl, Klaus Lehnertz. Emergence of a tipping subnetwork during a critical transition in networked systems: A new avenue to extreme events. Phys. Rev. Research 7, 023109. May 1, 2025.

Also: network, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, networks, excitable complex networks, network edges, network vertices, subnetwork, tipping subnetworks, small-worlds, unexpected shifts, transitions, critical transition, extreme events, interrelatedness, time-dependent interrelatedness.

venerdì 9 maggio 2025

# gst: emergent oscillations and chaos in noncompliant microfluidic networks.

<< Incompressible fluids in microfluidic networks with nonrigid channels can exhibit flow rate oscillations analogous to electric current oscillations in RLC (resistor, inductor, capacitor) circuits. This is due to the elastic deformation of channel walls that can store and release fluid, as electric capacitors can store and release electric charges. This property is quantified through the compliance of the system, defined as the volume change relative to the pressure change. >>

<< In systems with rigid walls and incompressible fluid, compliance vanishes, and no oscillations can occur through this mechanism. >>

Here, AA << show that not only oscillations but also chaos can emerge in the flow-rate dynamics of noncompliant microfluidic networks with incompressible fluid. Notably, these dynamics emerge spontaneously, even under time-independent driving pressures. The underlying mechanism is governed by the effect of fluid inertia, which becomes relevant at moderate Reynolds numbers observed in microfluidic systems exhibiting complex flow patterns. >>

<< The results are established using a combination of direct numerical simulations and a reduced model derived from modal analysis. This approach enables (AA) to determine the onset of oscillations, the associated bifurcations, the oscillation frequencies and amplitudes, and their dependence on the driving pressures. >>

Yanxuan Shao, Jean-Regis Angilella, Adilson E. Motter. Emergent oscillations and chaos in noncompliant microfluidic networks. Phys. Rev. Fluids 10, 054401. May 1, 2025.

arXiv: 2505.00068v1 [physics.flu-dyn]. 

Also: network, elastic, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, networks, microfluidic networks, noncompliant networks with incompressible fluid, fluid inertia, 
driving pressures, elasticity, chaos.

giovedì 8 maggio 2025

# gst: apropos of adaptation of simple organisms to changing environments, self-organization and memory in a disordered entity to random driving.

AA << consider self-organization and memory formation in a mesoscopic model of an amorphous solid subject to a protocol of random shear confined to a strain range ±𝜖max. (They) develop proper readout protocols to show that the response of the driven system self-organizes to retain a memory of the strain range, which can be subsequently retrieved. >>

AA << findings generalize previous results obtained upon oscillatory driving and suggest that self-organization and memory formation of disordered materials can emerge under more general conditions, such as a disordered system interacting with its fluctuating environment. Self-organization results in a correlation between the dynamics of the system and its environment, providing thereby an elementary mechanism for sensing. >>

AA << conclude by discussing (Their)  results and their potential relevance for the adaptation of simple organisms lacking a brain to changing environments. >>

Muhittin Mungan, Dheeraj Kumar, et al. Self-Organization and Memory in a Disordered Solid Subject to Random Driving. Phys. Rev. Lett. 134, 178203. April 30, 2025.

arXiv: 2409.17096v2 [cond-mat.soft]. 

Also: disorder & fluctuations, 
self-assembly, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, disorder, fluctuations, self-assembly, self-organization, transitions

mercoledì 7 maggio 2025

# gst: inverse design of Kirigami; contracted shapes, deployed shapes, internal trajectories of rotating units.

<< Kirigami metamaterials have enabled a plethora of morphing patterns across art and engineering. However, the inverse design of kirigami for complex shapes remains a puzzle that so far cannot be solved without relying on complex numerical methods. >>

Here, AA << present a purely geometric design method to overcome the reliance on sophisticated numerical algorithms and showcase how to leverage it for three distinct types of morphing targets, i.e., the contracted shape, the deployed shape, and the internal trajectories of the rotating units in kirigami specimens. >>

AA << results unveil the fundamental relations between the kirigami deformation and the shape of its rotating units and enable us to establish the underpinning physics through theoretical investigations validated via numerical simulations. >>

Chuan Qiao, Shijun Chen, et al. Inverse Design of Kirigami through Shape Programming of Rotating Units. Phys. Rev. Lett. 134, 176103. May 2, 2025.

Also: kirigami, origami, metamorphosis,  in https://www.inkgmr.net/kwrds.html 

Keywords: gst, kirigami, origami, metamorphosis

martedì 6 maggio 2025

# gst: like fireflies or neurons, dynamics of pulsating swarmalators on a ring.

AA << study a simple one-dimensional model of swarmalators, a generalization of phase oscillators that swarm around in space as well as synchronize internal oscillations in time. Previous studies of the model focused on Kuramoto-type couplings, where the phase interactions are governed by phase differences. >>

 Here AA << consider Winfree-type coupling, where the interactions are multiplicative, determined by the product of a phase response function  and phase pulse function . This more general interaction (from which the Kuramoto phase differences emerge after averaging) produces rich physics: six long-term modes of organization are found, which we characterize numerically and analytically. >>

Samali Ghosh, Kevin O'Keeffe, et al. Dynamics of pulsating swarmalators on a ring. arXiv: 2504.14912v1 [nlin.AO]. Apr 21, 2025. 

Also: swarm, swarmalators, instability, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, swarm, swarmalators, instability

lunedì 5 maggio 2025

# gst: transitions of breakup regimes for viscous droplets in airflow.

In this AA study, << the transitions of breakup regimes for viscous droplets are investigated experimentally using high-speed imaging taken from a side view and a 45 view. Based on the morphology change in the middle of the droplet, the breakup regimes are classified into no-breakup, bag breakup, bag-stamen, low-order multimode, high-order multimode, and shear-stripping breakup. The droplet morphologies in different regimes and the corresponding transitions are discussed in detail. >>

<< The droplet viscosity dissipates the kinetic energy transferred by the airflow during the initial droplet flattening, and affects the development of the Rayleigh-Taylor instability wave after the flattening. Through the analysis of the droplet deformation and the Rayleigh-Taylor instability with the droplet viscosity taken into account, the transition conditions of different regimes are obtained in a regime map. By further considering the relative velocity loss between the droplet and the airflow, the ranges of the dual-bag breakup in the low-order multimode regime and the droplet retraction in the bag-stamen regime are determined. >>

Zhikun Xu, Tianyou Wang, Zhizhao Che. Transitions of breakup regimes for viscous droplets in airflow. arXiv: 2504.14149v1 [physics.flu-dyn]. Apr 19, 2025.

Also: drop, droplet, droploid, transition, instability, waves, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drops, droplets, droploids, viscous droplets, droplet breakup, transitions, instability, waves

venerdì 2 maggio 2025

# gst: period-doubling route to chaos in viscoelastic flows

<< Polymer solutions can develop chaotic flows, even at low inertia. This purely elastic turbulence is well studied, but little is known about the transition to chaos. In two-dimensional (2D) channel flow and parallel shear flow, traveling wave solutions involving coherent structures are present for sufficiently large fluid elasticity. >>

AA << numerically study 2D periodic parallel shear flow in viscoelastic fluids, and (They) show that these traveling waves become oscillatory and undergo a series of period-doubling bifurcations en-route to chaos. >>

Jeffrey Nichols, Robert D. Guy, Becca Thomases. Period-doubling route to chaos in viscoelastic Kolmogorov flow. Phys. Rev. Fluids 10, L041301. Apr 17, 2025.

Also: chaos, waves, elastic, turbulence, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chaos, waves, traveling waves, elasticity, viscoelastic fluids, turbulence, elastic turbulence, period-doubling bifurcations, transitions

mercoledì 30 aprile 2025

# gst: apropos of migrations, asymmetric simple exclusion process with concerted hopping.


<< An important mechanism enabling fast ion diffusion in solid electrolytes is considered to be the significant lowering of the activation barrier when two or more ion particles hop simultaneously between sites, i.e., concerted migration, compared to single-ion hopping. >>

In this study AA << incorporate a mechanism of simultaneous particle hopping into the asymmetric simple exclusion process, which is an archetypal model for many-particle transportation phenomena, and investigate its impact on particle transport properties. >>

In Their model, << reflecting ion dynamics, the hopping rates are controlled by the activation energy, inverse temperature, and strength of an external driving field. (AA) first construct an exact solution that describes the steady state of the proposed model. By using this solution, (They) find that concerted migration substantially increases the particle current and induces a shift of the peak in the fundamental diagram, i.e., the density-current relationship. >>

AA << also show the presence of a critical temperature that maximizes the current. Additionally, we discuss the implications within parameter regions corresponding to actual materials. >>

Takahiro Ezaki, Kai Kihara, et al. Asymmetric simple exclusion process with concerted hopping. Phys. Rev. Research 7, 023068. Apr 21, 2025.


Keywords: gst, particles, migration, asymmetric exclusion process, hopping, hopping rates

martedì 29 aprile 2025

# gst: homology for structural characterization in disordered systems

<< Local and global structural characterizations emphasize different aspects of materials, with the former focusing on microscopic features like coordination environment, short-range order, bond angles and lengths, and the latter on macroscopic features like long-range order, phase structure, lattice constants, and overall symmetry. In conclusion, local characterization focuses on the environment and structure of individual particles or regions, while global characterization refers to the overall topology or geometry of the material. >>

AA << propose a unified framework based on persistent homology to characterize both local and global structures in disordered systems. It can simultaneously generate local and global descriptors using the same algorithm and data structure, and has been shown to be highly effective and interpretable in predicting particle rearrangements and classifying global phases. >>

AA also << define a nonparametric metric, the separation index, (that) establishes a connection between particle environments and the global phase structure. >>

An Wang, Li Zou. Persistent homology for structural characterization in disordered systems. Phys. Rev. E 111, 045306. Apr 17, 2025.

Also: particle, disorder, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, particle, disorder, homology


sabato 26 aprile 2025

# gst: how noise affects memory in linear recurrent networks


<< The effects of noise on memory in a linear recurrent network are theoretically investigated. Memory is characterized by its ability to store previous inputs in its instantaneous state of network, which receives a correlated or uncorrelated noise. >>

<< Two major properties are revealed: First, the memory reduced by noise is uniquely determined by the noise's power spectral density (PSD). Second, the memory will not decrease regardless of noise intensity if the PSD is in a certain class of distribution (including power law). >>

JingChuan Guan, Tomoyuki Kubota, et al. How noise affects memory in linear recurrent networks. Phys. Rev. Research 7, 023049. Apr 14, 2025.

Also: noise, network, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, noise, network, memory


giovedì 24 aprile 2025

# gst: stochastic surfing turbulent vorticity.

<< The chaotic dynamics of small-scale vorticity plays a key role in understanding and controlling turbulence, with direct implications for energy transfer, mixing, and coherent structure evolution. >>

Here AA << use a combination of experiments, theory and simulations to show that small magnetic particles of different densities, exploring flow regions of distinct vorticity statistics, can act as effective probes for measuring and forcing turbulence at its smallest scale. The interplay between the magnetic torque, from an externally controllable magnetic field, and hydrodynamic stresses, from small-scale turbulent vorticity, reveals an extremely rich phenomenology. >>

Notably, AA << present the first observation of stochastic resonance for particles in turbulence: turbulent fluctuations, effectively acting as noise, counterintuitively enhance the particle rotational response to external forcing. (They) identify a pronounced resonant peak in particle rotational phase-lag when the applied magnetic field matches the characteristic intensity of small-scale vortices. >>

<< Furthermore, (They) uncover a novel symmetry-breaking mechanism: an oscillating magnetic field with zero-mean angular velocity remarkably induces net particle rotation in turbulence with zero-mean vorticity, as turbulent fluctuations aid the particle in "surfing" the magnetic field. >>

Ziqi Wang, Xander M. de Wit, et al. Stochastic surfing turbulent vorticity. arXiv: 2504.08346v1 [physics.flu-dyn]. Apr 11, 2025. 

Also: vortex, turbulence, noise, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, vortices, turbulence, turbulent fluctuations, small-scale turbulent vorticity, stochastic resonance, noise, transitions 

martedì 22 aprile 2025

# gst: strange attractors in complex networks

<< Disorder and noise in physical systems often disrupt spatial and temporal regularity, yet chaotic systems reveal how order can emerge from unpredictable behavior. Complex networks, spatial analogs of chaos, exhibit disordered, non-Euclidean architectures with hidden symmetries, hinting at spontaneous order. Finding low-dimensional embeddings that reveal network patterns and link them to dimensionality that governs universal behavior remains a fundamental open challenge, as it needs to bridge the gap between microscopic disorder and macroscopic regularities. >>

<< Here, the minimal space revealing key network properties is introduced, showing that non-integer dimensions produce chaotic-like attractors. >>

Pablo Villegas. Strange attractors in complex networks. Phys. Rev. E 111, L042301. Apr 15, 2025. 

arXiv: 2504.08629v1 [cond-mat.stat-mech] . Apr 11, 2025.

Also: disorder, disorder & fluctuations, noise, network, attractor, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, disorder, disorder & fluctuations, noise, networks, attractors, self-similarity, chaos 

venerdì 18 aprile 2025

# gst: weird quasiperiodic attractors


AA << consider a class of n-dimensional, n≥2, piecewise linear discontinuous maps that can exhibit a new type of attractor, called a weird quasiperiodic attractor. While the dynamics associated with these attractors may appear chaotic, (They)  prove that chaos cannot occur. The considered class of n-dimensional maps allows for any finite number of partitions, separated by various types of discontinuity sets. The key characteristic, beyond discontinuity, is that all functions defining the map have the same real fixed point. These maps cannot have hyperbolic cycles other than the fixed point itself. >>

Laura Gardini, Davide Radi, et al. Abundance of weird quasiperiodic attractors in piecewise linear discontinuous maps. arXiv: 2504.04778v1 [math.DS]. Apr 7, 2025.

Also: attractor, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, attractors, weird attractors, chaos