Translate

Visualizzazione post con etichetta chaos. Mostra tutti i post
Visualizzazione post con etichetta chaos. Mostra tutti i post

sabato 22 febbraio 2025

# gst: order and chaos in systems of coaxial vortex pairs

Fig. B.12: Ex. with 4 interact. vortex pairs

AA << have analyzed interactions between two and three coaxial vortex pairs, classifying their dynamics as either ordered or chaotic based on strengths, initial sizes, and initial horizontal separations.  >>️

They << found that periodic cases are scattered among chaotic ones across different initial configurations. Quasi-periodic leapfrogging typically occurs when the initial distances between the vortex pairs are small and cannot coexist with vortex-pair overtake. When the initial configuration splits into two interacting vortex pairs and a single propagating vortex pair, the two interacting pairs consistently exhibit periodic leapfrogging. For the smallest initial horizontal separations, the system predominantly exhibits chaotic or quasi-periodic motions rather than periodic leapfrogging with a single frequency. This behavior is due to the strong coupling between all three vortex pairs. When the pairs are in close proximity, more complex and chaotic dynamics emerge instead of periodic motion. >>

Their << findings indicate that quasi-periodic leapfrogging and chaotic interactions generally occur when the three vortex pairs have similar strengths and initial sizes. Conversely, discrepancies in these parameters cause the system to disintegrate into two subsystems: a single propagating vortex pair and two periodically leapfrogging pairs. >>️
Christiana Mavroyiakoumou, Wenzheng Shi. Order and Chaos in Systems of Coaxial Vortex Pairs. arXiv: 2502.07002v1 [physics.flu-dyn]. Feb 10, 2025. ️

Also: chaos, vortexorder, disorder, disorder & fluctuations, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chaos, vortex, order, disorder, disorder & fluctuations


mercoledì 19 febbraio 2025

# gst: alignment-induced self-organization of autonomously steering microswimmers: turbulence, clusters, vortices, and jets.


<< Microorganisms can sense their environment and adapt their movement accordingly, which gives rise to a multitude of collective phenomena, including active turbulence and bioconvection. In fluid environments, collective self-organization is governed by hydrodynamic interactions. >>

<< By large-scale mesoscale hydrodynamics simulations, (AA) study the collective motion of polar microswimmers, which align their propulsion direction by hydrodynamic steering with that of their neighbors. The simulations of the employed squirmer model reveal a distinct dependence on the type of microswimmer—puller or pusher—flow field. No global polar alignment emerges in both cases. Instead, the collective motion of pushers is characterized by active turbulence, with nearly homogeneous density and a Gaussian velocity distribution; strong self-steering enhances the local coherent movement of microswimmers and leads to local fluid-flow speeds much larger than the individual swim speed. >>

<< Pullers exhibit a strong tendency for clustering and display velocity and vorticity distributions with fat exponential tails; their dynamics is chaotic, with a temporal appearance of vortex rings and fluid jets. >>

AA << results show that the collective behavior of autonomously steering microswimmers displays a rich variety of dynamic self-organized structures. >>

Segun Goh, Elmar Westphal, et al. Alignment-induced self-organization of autonomously steering microswimmers: Turbulence, clusters, vortices, and jets. Phys. Rev. Research 7, 013142. Feb 7, 2025. 

Also: swim, microswimmer, particle, turbulencechaos, noise, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, swim, swimmer, microswimmers, particle, turbulence, chaos, noise


mercoledì 12 febbraio 2025

# gst: chaotic billiards inside mixed curvatures


<< The boundary of a billiard system dictates its dynamics, which can be integrable, mixed, or fully chaotic. >>️

This AA study << introduces two such billiards: a bean-shaped billiard and a peanut-shaped billiard, the latter being a variant of Cassini ovals. Unlike traditional chaotic billiards, these systems incorporate both focusing and defocusing regions along their boundaries, with no neutral segments. >>

AA << examine both classical and quantum dynamics of these billiards and observe a strong alignment between the two perspectives. For classical analysis, the billiard flow diagram and billiard map reveal sensitivity to initial conditions, a hallmark of classical chaos. In the quantum domain, (AA) use nearest-neighbour spacing distribution and spectral complexity as statistical measures to characterise chaotic behaviour. >>

<< Both classical and quantum mechanical analysis are in firm agreement with each other. One of the most striking quantum phenomena (They) observe is the eigenfunction scarring (both scars and super-scars). Scarring phenomena serve as a rich visual manifestation of quantum and classical correspondence, and highlight quantum suppression chaos at a local level. >>

Pranaya Pratik Das, Tanmayee Patra, Biplab Ganguli. Manifestations of chaos in billiards: the role of mixed curvature. arXiv: 2501.08839v1 [nlin.CD]. Jan 15, 2025.

Also: billiard, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, billiard, chaos


mercoledì 5 febbraio 2025

# gst: discontinuous transitions to active nematic turbulence.


<< Active fluids exhibit chaotic flows at low Reynolds number known as active turbulence. Whereas the statistical properties of the chaotic flows are increasingly well understood, the nature of the transition from laminar to turbulent flows as activity increases remains unclear. Here, through simulations of a minimal model of unbounded active nematics, (AA) find that the transition to active turbulence is discontinuous. (They) show that the transition features a jump in the mean-squared velocity, as well as bistability and hysteresis between laminar and chaotic flows. >>

<< From distributions of finite-time Lyapunov exponents, (AA) identify the transition at a value A∗≈4900 of the dimensionless activity number. Below the transition to chaos, (They) find subcritical bifurcations that feature bistability of different laminar patterns. These bifurcations give rise to oscillations and to chaotic transients, which become very long close to the transition to turbulence. Overall, (Their) findings contrast with the continuous transition to turbulence in channel confinement, where turbulent puffs emerge within a laminar background. >>

AA << propose that, without confinement, the long-range hydrodynamic interactions of Stokes flow suppress the spatial coexistence of different flow states, and thus render the transition discontinuous. >>️

Malcolm Hillebrand, Ricard Alert. Discontinuous Transition to Active Nematic Turbulence. arXiv: 2501.06085v1 [cond-mat.soft]. Jan 10, 2025.

Also: chaos, transition, turbulence, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chaos, transition, turbulence, jumps, active nematics


lunedì 3 febbraio 2025

# gst: limit cycles and chaos in planar hybrid systems.

<< The main inspiration of (this AA) work is the paper of Llibre and Teixeira (Nonlinear Dyn. 91, No. 1, 249-255, 2018) about Filippov systems formed by two linear centers and having x = 0 as discontinuity line. One of the main conclusions of the paper is that such systems cannot have limit cycles. Actually, either it does not have periodic orbits or every orbit is periodic. Therefore, its dynamics is relatively simple. Inspired by this work and the raising notion of hybrid systems, (AA) wondered what could happen if we allow jumps on the discontinuity line. As a result, (They) discovered not only that limit cycles are allowed with arbitrarily small “perturbations” in the jump, (..), but also that such systems allow chaotic dynamics. Therefore, (AA) conclude that hybrid systems with simple formulation can have rich dynamics. (They) also observe that a complete characterization of the dynamics of X ∈ Xn depends on the characterization of its first return map, which is a piecewise polynomial map on the real line. This, together with the fact that the systems studied here are a generalization of the Filippov systems (..), illustrates that hybrid systems can be seen as a three-fold bridge connecting continuous, piecewise continuous and discrete dynamical systems. >>️

Jaume Llibre, Paulo Santana. Limit cycles and chaos in planar hybrid systems. arXiv: 2407.05151v2 [math.DS]. Oct 1, 2024. 

Also: chaos, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, limit cycles, chaos, transitions, small perturbations, jumps  


sabato 1 febbraio 2025

# gst: instability, shocks, and competition interfaces in the Brownian last-passage percolation model


<<  For stochastic Hamilton-Jacobi (SHJ) equations, instability points are the space-time locations where two eternal solutions with the same asymptotic velocity differ. Another crucial structure in such equations is shocks, which are the space-time locations where the velocity field is discontinuous. >>

AA << provide a detailed analysis of the structure and relationships between shocks, instability, and competition interfaces in the Brownian last-passage percolation model, which serves as a prototype of a semi-discrete inviscid stochastic HJ equation in one space dimension. >>

AA << show that the shock trees of the two unstable eternal solutions differ within the instability region and align outside of it. Furthermore, (They) demonstrate that one can reconstruct a skeleton of the instability region from these two shock trees. >>️

Firas Rassoul-Agha, Mikhail Sweeney. Shocks and instability in Brownian last-passage percolation. arXiv:  2407.07866v2 [math.PR]. Oct 18, 2024. 

Also: Brownian last-passage percolation (LPP) model. In: S. GANGULY,  A. HAMMOND. Stability and chaos in dynamical last passage percolation. Jun 7, 2024. 

Keywords: gst, instability, shock, competition, chaos, percolation


giovedì 16 gennaio 2025

# gst: chaotic dynamics creates and destroys branched flow.

<< The phenomenon of branched flow, visualized as a chaotic arborescent pattern of propagating particles, waves, or rays, has been identified in disparate physical systems ranging from electrons to tsunamis, with periodic systems only recently being added to this list. >>

Here, AA << explore the laws governing the evolution of the branches in periodic potentials. On one hand, (They) observe that branch formation follows a similar pattern in all nonintegrable potentials, no matter whether the potentials are periodic or completely irregular. Chaotic dynamics ultimately drives the birth of the branches. >>

<< On the other hand, (AA) results reveal that for periodic potentials the decay of the branches exhibits new characteristics due to the presence of infinitely stable branches known as superwires. Again, the interplay between branched flow and superwires is deeply connected to Hamiltonian chaos. >>

Alexandre Wagemakers, Aleksi Hartikainen, et al. Chaotic dynamics creates and destroys branched flow. Phys. Rev. E 111, 014214. Jan 7, 2025.
arXiv: 2406.12922v2 [nlin.PS]. 

Also: chaos, waves, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chaos, waves, branched flows, superwires, transitions


venerdì 27 dicembre 2024

# gst: chimera states in a system of stationary and flying-through deterministic particles with an internal degree of freedom.

<< This work greatly extends (AA)  understanding of the dynamics of flying-through oscillators in media with nonlocal interaction. >>

<< Let’s describe the results obtained. First, it was shown that, depending on the number of potential wells, particles can be stationary, flying-through, or split into two subensembles of stationary and flying-through particles.  Secondly, it has been demonstrated that in the case of stationary arrangement of particles, the fully synchronous regime can become unstable due to the inhomogeneity of particle distribution between potential wells. In a partially synchronous cluster, phase incoherent elements can be located within the same potential well. Third, when stationary and flying-through elements coexist, chimera regimes are realized at each subensemble and further coexist with each other. This means that, despite the nonlocal nature of the interaction between elements of the medium, what is important for structure formation is a relatively stable mutual arrangement of particles relative to each other, which leads to a chimera state in each of the subensemble. >>️

Maxim I. Bolotov, Lev A. Smirnov, et al. Chimera states in a system of stationary and flying-through deterministic particles with an internal degree of freedom. arXiv: 2412.05044v1 [nlin.CD]. Dec 6, 2024.

Also: chimera, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chimera, chaos

lunedì 23 dicembre 2024

# gst: apropos of interweavings, linking dispersion and stirring in randomly braiding flows.

     Fig. 5 (a)

<< Many random flows, including 2D unsteady and stagnation-free 3D steady flows, exhibit non-trivial braiding of pathlines as they evolve in time or space. (AA) show that these random flows belong to a pathline braiding 'universality class' that quantitatively links dispersion and chaotic stirring, meaning that the Lyapunov exponent can be estimated from the purely advective transverse dispersivity. (AA) verify this quantitative link for both unsteady 2D and steady 3D random flows. This result uncovers a deep connection between transport and mixing over a broad class of random flows. >>️

Daniel R. Lester, Michael G. Trefry, Guy Metcalfe. Linking Dispersion and Stirring in Randomly Braiding Flows. arXiv: 2412.05407v1 [physics.flu-dyn]. Dec 6, 2024.

Also: random, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, random, random flows, randomly braiding flows, chaos


sabato 14 dicembre 2024

# gst: self-organized chimera states in pulse-coupled oscillator systems.

<< Coupled oscillator systems can lead to states in which synchrony and chaos coexist. These states are called “chimera states.” >>
AA << study a variation of a pulse-coupled oscillator (PCO) model that has been shown to produce chimera states, demonstrate that it reproduces several of the expected chimera properties, like the formation of multiple heads and the ability to control the natural drift that Kuramoto's chimera states experience in a ring, and explain how chimera states emerge. >>️

<< Three notable aspects of chimeras in our PCO networks (with time-discrete coupling) are the absence of firing events from the tail (which still almost synchronize their phases), the reliable onset of the phenomenon from virtually any initial configuration, and the lack of a superimposed structure (e.g., artificially splitting the population into subgroups) and thus the self-organized nature of the phenomenon. >>️

Arke Vogell, Udo Schilcher, et al. Chimera states in pulse-coupled oscillator systems. Phys. Rev. E 110, 054214. Nov 26, 2024.

Also: chimera, self-assembly, chaos, network,  in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chimera, self-assembly, chaos, network 


venerdì 13 dicembre 2024

# game: balance exploration and exploitation, making decisions cooperatively without sharing information.


<< Multiagent reinforcement learning (MARL) studies crucial principles that are applicable to a variety of fields, including wireless networking and autonomous driving. (AA) propose a photonic-based decision-making algorithm to address one of the most fundamental problems in MARL, called the competitive multiarmed bandit (CMAB) problem. >>

AA << demonstrate that chaotic oscillations and cluster synchronization of optically coupled lasers, along with (their) proposed decentralized coupling adjustment, efficiently balance exploration and exploitation while facilitating cooperative decision making without explicitly sharing information among agents. >>

AA << study demonstrates how decentralized reinforcement learning can be achieved by exploiting complex physical processes controlled by simple algorithms. >>

Shun Kotoku, Takatomo Mihana, et al. Decentralized multiagent reinforcement learning algorithm using a cluster-synchronized laser network. Phys. Rev. E 110, 064212. Dec 11, 2024.


Also: game, chaos, ai (artificial intell), in https://www.inkgmr.net/kwrds.html 

Keywords: game, cooperation, chaos, exploration, exploitation, ai, artificial intelligence, MARL, CMAB.


venerdì 22 novembre 2024

# gst: protected chaos in a topological lattice.

<< The erratic nature of chaotic behavior is thought to erode the stability of periodic behavior, including topological oscillations. However, (AA) discover that in the presence of chaos, non-trivial topology not only endures but also provides robust protection to chaotic dynamics within a topological lattice hosting non-linear oscillators. >>

<< Despite the difficulty in defining topological invariants in non-linear settings, non-trivial topological robustness still persists in the parametric state of chaotic boundary oscillations. (AA) demonstrate this interplay between chaos and topology by incorporating chaotic Chua's circuits into a topological Su-Schrieffer-Heeger (SSH) circuit. >>

<< By extrapolating from the linear limit to deep into the non-linear regime, (AA) find that distinctive correlations in the bulk and edge scroll dynamics effectively capture the topological origin of the protected chaos. (Their)  findings suggest that topologically protected chaos can be robustly achieved across a broad spectrum of periodically-driven systems, thereby offering new avenues for the design of resilient and adaptable non-linear networks. >>️

Haydar Sahin, Hakan Akgün, et al. Protected chaos in a topological lattice. arXiv: 2411.07522v1 [cond-mat.mes-hall]. Nov 12, 2024.

Also: chaos, random, instability, transition, network, ai (artificial intell), in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chaos, random,  instability, transition, network, AI, Artificial Intelligence


sabato 16 novembre 2024

# gst: apropos of transverse instabilities, from chimeras to extensive chaos

<< Populations of coupled oscillators can exhibit a wide range of complex dynamical behavior, from complete synchronization to chimera and chaotic states. We can thus expect complex dynamics to arise in networks of such populations. >>️

Here AA << analyze the dynamics of networks of populations of heterogeneous mean-field coupled Kuramoto-Sakaguchi oscillators, and show that the instability that leads to chimera states in a simple two-population model also leads to extensive chaos in large networks of coupled populations. >>️

Pol Floriach, Jordi Garcia-Ojalvo, Pau Clusella. From chimeras to extensive chaos in networks of heterogeneous Kuramoto oscillator populations. arXiv: 2407.20408v2 [nlin.CD]. Oct 11, 2024.

Also: chimera, instability, chaos, network, in 

Keywords: gst, chimera, instability, chaos, network


venerdì 18 ottobre 2024

# gst: isles of regularity (depending on the initial setup) in a sea of chaos amid the gravitational three-body problem.


AA << study probes the presence of regular (i.e. non-chaotic) trajectories within the 3BP (three-body problem) and assesses their impact on statistical escape theories. >>

AA << analysis reveals that regular trajectories occupy a significant fraction of the phase space, ranging from 28% to 84% depending on the initial setup, and their outcomes defy the predictions of statistical escape theories. The coexistence of regular and chaotic regions at all scales is characterized by a multi-fractal behaviour. >>

Alessandro Alberto Trani, Nathan W.C. Leigh, et al. Isles of regularity in a sea of chaos amid the gravitational three-body problem. A&A, 689, A24, Jun 25, 2024.

"Islands" of Regularity Discovered in the Famously Chaotic Three-Body Problem. University of Copenhagen. Oct 11, 2024.

Also: three balls, escape, chaos, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, three balls, escape, chaos, transition 


martedì 1 ottobre 2024

# gst: dynamics of pulsating spheres orbiting black holes.

AA << study the chaotic dynamics of spinless extended bodies in a wide class of spherically symmetric spacetimes, which encompasses black-hole scenarios in many modified theories of gravity. (They) show that a spherically symmetric pulsating ball may have chaotic motion in this class of spacetimes. >>

AA << use Melnikov's method to show the presence of homoclinic intersections, which imply chaotic behavior, as a consequence of (their)  assumption that the test body has an oscillating radius. >>

Fernanda de F. Rodrigues, Ricardo A. Mosna, Ronaldo S. S. Vieira. Chaotic dynamics of pulsating spheres orbiting black holes. arXiv: 2409.14667v1 [gr-qc]. Sep 23, 2024.

Also: black hole, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, black hole, homoclinic orbit, chaos, transition


mercoledì 25 settembre 2024

# gst: apropos of intermittent switchings, presence of chaotic saddles in fluid turbulence.

<< Intermittent switchings between weakly chaotic (laminar) and strongly chaotic (bursty) states are often observed in systems with high-dimensional chaotic attractors, such as fluid turbulence. They differ from the intermittency of a low-dimensional system accompanied by the stability change of a fixed point or a periodic orbit in that the intermittency of a high-dimensional system tends to appear in a wide range of parameters. >>️

Here AA << demonstrate the presence of chaotic saddles underlying intermittency in fluid turbulence and phase synchronization. Furthermore, (they) confirm that chaotic saddles persist for a wide range of parameters. Also, a kind of phase synchronization turns out to occur in the turbulent model. >>️

Hibiki Kato, Miki U Kobayashi, et al. A laminar chaotic saddle within a turbulent attractor. arXiv: 2409.08870v1 [nlin.CD]. Sep 13, 2024. 

Also: transition, turbulence, intermittency, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, transition, turbulence, intermittency, chaos


venerdì 20 settembre 2024

# gst: a body of revolution with a cat’s toy mechanism.


AA << introduce a class of examples which provide an affine generalization of the nonholonomic problem of a convex body rolling without slipping on the plane. >>
They << prove that (this system can be) integrable if the generalized momentum M is vertical (i.e. parallel to γ) and exhibit numerical evidence that it is chaotic otherwise. >>️

M. Costa Villegas, L.C. García-Naranjo. Affine generalizations of the nonholonomic problem of a convex body rolling without slipping on the plane. arXiv: 2409.08072v1 [math-ph]. Sep 12, 2024. 

Also: transition, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, transition, chaos


sabato 17 agosto 2024

# gst: networks of pendula with diffusive interactions, chaotic regime seems to emerge at low energies.

AA << study a system of coupled pendula with diffusive interactions, which could depend both on positions and on momenta. The coupling structure is defined by an undirected network, while the dynamic equations are derived from a Hamiltonian; as such, the energy is conserved. >>️

<< The behaviour observed showcases a mechanism for the appearance of chaotic oscillations in conservative systems. For Hamiltonians with two degrees of freedom, it has been shown how chaos can emerge near a saddle-centre equilibrium possessing a homoclinic orbit. (AA) have seen that higher-dimensional systems having mixed equilibria, i.e., generalisations of a saddle-center where the eigenvalues are only imaginary and reals, also show chaotic behaviour close to those points.  >>️

AA << complement the analysis with some numerical simulations showing the interplay between bifurcations of the origin and transitions to chaos of nearby orbits. A key feature is that the observed chaotic regime emerges at low energies. >>
Riccardo Bonetto, Hildeberto Jardón-Kojakhmetov, Christian Kuehn. Networks of Pendula with Diffusive Interactions. arXiv: 2408.02352v1 [math.DS]. Aug 5, 2024.

Also: pendulum, network, transition, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, pendulum, network, transition, chaos, bifurcation


giovedì 1 agosto 2024

# game: hypothesis of a geometric design of chaotic attractors, on demand


AA << propose a method using reservoir computing to generate chaos with a desired shape by providing a periodic orbit as a template, called a skeleton. (They) exploit a bifurcation of the reservoir to intentionally induce unsuccessful training of the skeleton, revealing inherent chaos. The emergence of this untrained attractor, resulting from the interaction between the skeleton and the reservoir's intrinsic dynamics, offers a novel semi-supervised framework for designing chaos. >>️

Tempei Kabayama, Yasuo Kuniyoshi, et al. Designing Chaotic Attractors: A Semi-supervised Approach. arXiv: 2407.09545v1 [cs.NE]. Jun 27, 2024.

Also: game, chaos in https://www.inkgmr.net/kwrds.html 

Keywords: game, chaos, chaotic attractors


venerdì 26 luglio 2024

# gst: Resonancelike emergence of chaos in complex networks of damped-driven nonlinear systems.

AA << solve a critical outstanding problem in this multidisciplinary research field: the emergence and persistence of spatiotemporal chaos in complex networks of damped-driven nonlinear oscillators in the significant weak-coupling regime, while they exhibit regular behavior when uncoupled. >>

They << uncover and characterize the basic physical mechanisms concerning both heterogeneity-induced and impulse-induced emergence, enhancement, and suppression of chaos in starlike and scale-free networks of periodically driven, dissipative nonlinear oscillators. >>️

Ricardo Chacon, Pedro J. Martínez. Resonancelike emergence of chaos in complex networks of damped-driven nonlinear systems. Phys. Rev. E 110, 014209. Jul 19, 2024. 

Also: network, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, network, resonance, chaos