Translate

Visualizzazione post con etichetta random walk. Mostra tutti i post
Visualizzazione post con etichetta random walk. Mostra tutti i post

mercoledì 2 luglio 2025

# gst: turbulence spreading and anomalous diffusion on combs.

<< This (AA) paper presents a simple model for such processes as chaos spreading or turbulence spillover into stable regions. In this simple model the essential transport occurs via inelastic resonant interactions of waves on a lattice. The process is shown to result universally in a subdiffusive spreading of the wave field. The dispersion of this spreading process is found to depend exclusively on the type of the interaction process (three- or four-wave), but not on a particular underlying instability. The asymptotic transport equations for field spreading are derived with the aid of a specific geometric construction in the form of a comb. >>

<< The results can be summarized by stating that the asymptotic spreading proceeds as a continuous-time random walk (CTRW) and corresponds to a kinetic description in terms of fractional-derivative equations. The fractional indexes pertaining to these equations are obtained exactly using the comb model. >>

<< A special case of the above theory is a situation in which two waves with oppositely directed wave vectors couple together to form a bound state with zero momentum. This situation is considered separately and associated with the self-organization of wave-like turbulence into banded flows or staircases. >>

<< Overall, (AA) find that turbulence spreading and staircasing could be described based on the same mathematical formalism, using the Hamiltonian of inelastic wave-wave interactions and a mapping procedure into the comb space. Theoretically, the comb approach is regarded as a substitute for a more common description based on quasilinear theory. Some implications of the present theory for the fusion plasma studies are discussed and a comparison with the available observational and numerical evidence is given. >>

Alexander V. Milovanov, Alexander Iomin, Jens Juul Rasmussen. Turbulence spreading and anomalous diffusion on combs. Phys. Rev. E 111, 064217 – Published 24 June, 2025

Also: waves, turbulence, walk, self-assembly, instability, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, waves, turbulence, walk, self-assembly, instability, chaos, comb model, inelastic resonant interactions, inelastic wave-wave interactions, continuous-time random walk, self-organization of wave-like turbulence, Lévy flights, Lévy walks

mercoledì 25 giugno 2025

# gst: interactive anisotropic walks in 2D generated from a 3-state opinion dynamics model.


<< A system of interacting walkers is considered in a two-dimensional hypothetical space, where the dynamics of each walker are governed by the opinion states of the agents of a fully connected three-state opinion dynamics model. Such walks, studied in different models of statistical physics, are usually considered in one-dimensional virtual spaces. >>

In this article AA has performed the mapping << in such a way that the walk is directed along the 𝑌 axis while it can move either way along the 𝑋 axis. The walk shows that there are three distinct regions as the noise parameter, responsible for driving a continuous phase transition in the model, is varied. In absence of any noise, the scaling properties and the form of the distribution along either axis do not follow any conventional form. >>

<< For any finite noise below the critical point the bivariate distribution of the displacements is found to be a modified biased Gaussian function while above it, only the marginal distribution along one direction is Gaussian. The marginal probability distributions can be extracted and the scaling forms of different quantities, showing power-law behavior, are obtained. The directed nature of the walk is reflected in the marginal distributions as well as in the exponents. >>

Surajit Saha, Parongama Sen. Interactive anisotropic walks in two dimensions generated from a three-state opinion dynamics model. Phys. Rev. E 111, 064123. Jun 18, 2025.

arXiv: 2409.10413v3 [cond-mat.stat-mech]. Apr 28, 2025. 

Also: walk, noise, random, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, walk, walking, random walk, randomness, noise, transitions, noise-induced transitions, criticality.

mercoledì 21 maggio 2025

# gst: accelerated first detection in discrete-time quantum walks using sharp restarts.

<< Restart is a common strategy observed in nature that accelerates first-passage processes, and has been extensively studied using classical random walks. In the quantum regime, restart in continuous-time quantum walks (CTQWs) has been shown to expedite the quantum hitting times [Phys. Rev. Lett. 130, 050802 (2023)]. >>

 Here, AA << study how restarting monitored discrete-time quantum walks (DTQWs) affects the quantum hitting times. (They) show that the restarted DTQWs outperform classical random walks in target searches, benefiting from quantum ballistic propagation, a feature shared with their continuous-time counterparts. >>

Kunal Shukla, Riddhi Chatterjee, C. M. Chandrashekar. Accelerated first detection in discrete-time quantum walks using sharp restarts. Phys. Rev. Research 7, 023069. Apr 21, 2025.

Also: walk, random, network, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, networks, randomness, walk, random walk, quantum walk, stochasticity, sharp restart.

martedì 20 maggio 2025

# gst: biased random walks on networks with stochastic resetting.

<< This study explores biased random walk dynamics with stochastic resetting on general networks. (AA) show that the combination of biased random walks and stochastic resetting makes significant contributions by analyzing the search efficiency. (They) derive two analytical expressions for the stationary distribution and the mean first passage time, which are related to the spectral representation of the probability transition matrix of a biased random walk without resetting. These expressions can be used to determine the capacity of a random walker to reach the specific target and probe a finite network. >>

AA << apply the analytical results to two types of networks, pseudofractal scale-free webs and T-fractals, which are constructed through an iterative process. (They) also extend a strategy to explore other complex structure networks or larger networks by leveraging the spectral properties. >>

Anlin Li, Xiaohan Sun. Biased random walks on networks with stochastic resetting. Phys. Rev. E 111, 054309. May 16, 2025.

Also: walk, random, network, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, networks, randomness, random walk, stochasticity, stochastic resetting.

giovedì 16 novembre 2023

gst: actually and counterintuitively a coherent jump could generate disorder.

AA << consider a quantized version of a model for “random walk in random environment.” (..) For a ring geometry (a chain with periodic boundary condition) it features a delocalization-transition as the bias in increased beyond a critical value, indicating that the relaxation becomes underdamped. Counterintuitively, the effective disorder is enhanced due to coherent hopping. >>

Ben Avnit, Doron Cohen. Quantum walk in stochastic environment. Phys. Rev. E 108, 054111. Nov 7, 2023. 

AlsoVoli a casaccio. Notes (quasi-stochastic poetry). Oct 01, 2006.

Also: 'random', 'transition', 'disorder', 'chaos', in https://www.inkgmr.net/kwrds.html

Keywords: gst, walk, random walk, quantum walk, qu-walk, jump, transition, disorder, chaos