AA << study the first-passage-time (FPT) properties of active Brownian particles to reach an absorbing wall in two dimensions. Employing a perturbation approach (They) obtain exact analytical predictions for the survival and FPT distributions for small Péclet numbers, measuring the importance of self-propulsion relative to diffusion. >>
<< While randomly oriented active agents reach the wall faster than their passive counterpart, their initial orientation plays a crucial role in the FPT statistics. Using the median as a metric, (AA) quantify this anisotropy and find that it becomes more pronounced at distances where persistent active motion starts to dominate diffusion. >>️
Yanis Baouche, Magali Le Goff, et al. First-passage-time statistics of active Brownian particles: a perturbative approach. arXiv: 2503.05401v1 [cond-mat.soft]. Mar 7, 2025.
Also: particle, random, in https://www.inkgmr.net/kwrds.html
Keywords: gst, particles, active particles, perturbation approach, randomness, stochasticity, stochastic resetting, rotational diffusion, anisotropy