Translate

Visualizzazione post con etichetta intermittency. Mostra tutti i post
Visualizzazione post con etichetta intermittency. Mostra tutti i post

giovedì 5 dicembre 2024

# gst: intermittency of bubble deformation in turbulence.

<< The deformation of finite-sized bubbles in intense turbulence exhibits complex geometries beyond simple spheroids as the bubbles exchange energy with the surrounding eddies across a wide range of scales. (AA)  study investigates deformation via the velocity of the most stretched tip of the deformed bubble in three dimensions, as the tip extension results from the compression of the rest of the interface by surrounding eddies. >>

<< The results show that the power spectrum based on the tip velocity exhibits a scaling akin to that of the Lagrangian statistics of fluid elements, but decays with a distinct timescale and magnitude modulated by the Weber number based on the bubble size. This indicates that the interfacial energy is primarily siphoned from eddies of similar sizes as the bubble. >>

<< Moreover, the tip velocity appears much more intermittent than the velocity increment, and its distribution near the extreme tails can be explained by the proposed model that accounts for the fact that small eddies with sufficient energy can contribute to extreme deformation. >>

<< These findings provide a framework for understanding the energy transfer between deformable objects and multiscale eddies in intense turbulence. >>

Xu Xu, Yinghe Qi, et al. Intermittency of Bubble Deformation in Turbulence. Phys. Rev. Lett. 133, 214001. Nov 19, 2024.

Also: bubble, turbulence, intermittency, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, turbulence, intermittency


mercoledì 25 settembre 2024

# gst: apropos of intermittent switchings, presence of chaotic saddles in fluid turbulence.

<< Intermittent switchings between weakly chaotic (laminar) and strongly chaotic (bursty) states are often observed in systems with high-dimensional chaotic attractors, such as fluid turbulence. They differ from the intermittency of a low-dimensional system accompanied by the stability change of a fixed point or a periodic orbit in that the intermittency of a high-dimensional system tends to appear in a wide range of parameters. >>️

Here AA << demonstrate the presence of chaotic saddles underlying intermittency in fluid turbulence and phase synchronization. Furthermore, (they) confirm that chaotic saddles persist for a wide range of parameters. Also, a kind of phase synchronization turns out to occur in the turbulent model. >>️

Hibiki Kato, Miki U Kobayashi, et al. A laminar chaotic saddle within a turbulent attractor. arXiv: 2409.08870v1 [nlin.CD]. Sep 13, 2024. 

Also: transition, turbulence, intermittency, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, transition, turbulence, intermittency, chaos


mercoledì 28 agosto 2024

# gst: dynamics of small droplets in turbulent multiphase flows


AA << show unambiguously that the formation of small droplets is governed by the internal dynamics which occurs during the breakup of large drops and that the high vorticity and the extreme dissipation associated to these events are the consequence and not the cause of the breakup. >>️

M. Crialesi-Esposito, G. Boffetta, L. Brandt, et al. How small droplets form in turbulent multiphase flows. Phys. Rev. Fluids 9, L072301. Jul 29, 2024. 

Also: drop, bubble, transition, turbulence, intermittency, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid,  bubble, transition, turbulence, intermittency


lunedì 18 marzo 2024

# gst: near the Hopf boundary, Intermittency and chimera states.

AA << study collective dynamics of networks of mutually coupled identical Lorenz oscillators near a subcritical Hopf bifurcation. Such systems exhibit induced multistable behavior with interesting spatiotemporal dynamics including synchronization, desynchronization, and chimera states. >>️

<< For analysis, (AA) first consider a ring topology with nearest-neighbor coupling and find that the system may exhibit intermittent behavior due to the complex basin structures and dynamical frustration, where temporal dynamics of the oscillators in the ensemble switches between different attractors. Consequently, different oscillators may show a dynamics that is intermittently synchronized (or desynchronized), giving rise to intermittent chimera states. The behavior of the intermittent laminar phases is characterized by the characteristic time spent in the synchronization manifold, which decays as a power law. >>

<< Such intermittent dynamics is quite general and is also observed in an ensemble of a large number of oscillators arranged in variety of network topologies including nonlocal, scale-free, random, and small-world networks. >>️

Anjuman Ara Khatun, Yusra Ahmed Muthanna, et al. Collective dynamics of coupled Lorenz oscillators near the Hopf boundary: Intermittency and chimera states. Phys. Rev. E 109, 034208. March 15, 2024.

Also: transition, intermittency, chaos, chimera, network, in https://www.inkgmr.net/kwrds.html

Keywords: gst, transition, intermittency, chaos, chimera, network


martedì 21 febbraio 2023

# gst: towards (insights into) intermittency and inhomogeneity of turbulent mixing

<< Fluid elements deform in turbulence by stretching and folding. In this work, by projecting the material deformation tensor onto the largest stretching direction, the dynamics of folding is depicted through the evolution of the material curvature. Results from direct numerical simulation (DNS) show that the curvature growth exhibits two regimes, first a linear stage dominated by folding fluid elements through a persistent velocity Hessian which then transitions to an exponential growth driven by the stretching of already strongly bent fluid elements. This transition leads to strong curvature intermittency at later stages, which can be explained by a proposed curvature-evolution model. The link between velocity Hessian to folding provides a new way to understand the crucial steps in energy cascade and mixing in turbulence beyond the classical linear description. >>

Yinghe Qi, Charles Meneveau, Greg Voth, Rui Ni. Folding dynamics and its intermittency in turbulence. arXiv: 2301.10341v1 [physics.flu-dyn]. Jan 24, 2023. 

Also

keyword 'intermittency' in FonT

keyword 'turbulence' in FonT

keyword 'turbolento' | 'turbolenza' in Notes (quasi-stochastic poetry)


keyword 'transition' | 'transitional' in FonT


keyword 'transition' | 'transizion*' in Notes (quasi-stochastic poetry)



Keywords: gst, intermittency, turbulence, transition


sabato 17 dicembre 2022

# gst: transitions, how two saddles can increase the transient times.

FIG. 8. Attractor and chaotic saddles (..) amplified around three bands of the chaotic attractor.  The global chaotic saddle is colored blue, and the local chaotic saddle is colored red. The attractors are colored black. 

AA << consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems, they are responsible for chaotic transients, fractal basin boundaries, chaotic scattering and they mediate interior crises. >>

<< In this work (AA) discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. (They) show how the presence of two saddles increase the transient times and analyze the phenomenon of crisis induced intermittency. >>️

Rodrigo Simile Baroni, Ricardo Egydio de Carvalho, et al. Chaotic saddles and interior crises in a dissipative nontwist system. arXiv: 2211.06921v1 [nlin.CD]. Nov 13, 2022. 

Also

keyword 'intermittency' in FonT

keyword 'dissipation' in FonT

keyword 'saddle' in FonT

keyword 'chaos' | 'chaotic' in Font



keyword 'caos' | 'caotico' in Notes (quasi-stochastic poetry)



Keywords: gst, transitions, dissipation, 
dissipative systems, chaos, saddle, chaotic saddle, crisis, interior crisis, intermittency



sabato 21 maggio 2022

# gst: apropos of transitions, two aspects of intermittency


<< intermittency produces significant probability of rare events that may locally accelerate the collision rates by a large factor in comparison with estimates using typical events. >>

<< Increasing intermittency of turbulence destroys the theory not via stronger bursts, but rather via increase of characteristic sizes of regions of calm and quiescent flow. ([AA️] remind that these two aspects of intermittency go together: increase of regions of calm flow and at the same time increased probability of strong bursts ([8] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, (Cambridge University Press, New York, 1995).). >>

Itzhak Fouxon, Seulgi Lee, Changhoon Lee. Intermittency and collisions of fast sedimenting droplets in turbulence.  arXiv:2205.06972v1 [physics.flu-dyn]. May 14, 2022. 


Also

keyword 'intermittency' in FonT


keyword 'intermittenza|e' | 'intermittente|i' in Notes (quasi-stochastic poetry)





Keywords: gst, intermittency, collision, drop, droplet, turbulence


lunedì 11 ottobre 2021

# gst: intermittent large-intensity pulses (LIE) due to instabilities in quasiperiodic motion (in Zeeman laser)

AA << report intermittent large-intensity pulses that originate in Zeeman laser due to instabilities in quasiperiodic motion, >>

<< one route follows torus-doubling to chaos and another goes via quasiperiodic intermittency in response to variation in system parameters. >>

<< During quasiperiodic intermittency, the temporal evolution of the laser shows intermittent chaotic bursting episodes intermediate to the quasiperiodic motion instead of periodic motion >>

<< The intermittent bursting appears as occasional large-intensity events (LIE). In particular, this quasiperiodic intermittency has not been given much attention so far from the dynamical system perspective, in general. >>

S. Leo Kingston, Arindam Mishra, Marek Balcerzak, Tomasz Kapitaniak, Syamal K. Dana. Instabilities in quasiperiodic motion lead to intermittent large-intensity events in Zeeman laser. arXiv: 2109.11847v1 [nlin.CD]. Sep 24, 2021. 


keywords: gst, quasiperiodic motion, intermittency, quasiperiodic intermittency, instability, chaos.


giovedì 15 luglio 2021

# gst: apropos of turbulence, self-similarity of turbulent flows with internal and external intermittency

<< Scientists have long used supercomputers to better understand how turbulent flows behave under a variety of conditions. Researchers have now include the complex but essential concept of 'intermittency' in turbulent flows. >>️

<< Despite its seemingly random, chaotic characteristics, researchers have identified some important properties that are universal, or at least very common, for turbulence under specific conditions. (..) Much of that important turbulent motion may stem from what happens in a thin area near the edge of the flame, where its chaotic motions collide with the smoother-flowing fluids around it. This area, the turbulent-non-turbulent interface (TNTI), has big implications for understanding turbulent mixing. >>️

<< Scientists distinguish between internal intermittency, which occurs at the smallest scales and is a characteristic feature of any fully developed turbulent flow, and external intermittency, which manifests itself at the edge of the flame and depends on the structure of the TNTI. >>️

<< For Bode and Gauding (Mathis Bode, Michael Gauding), understanding the small-scale turbulence happening at the thin boundary of the flame is the point. >>

<< Our simulations are highly resolved and are interested in these thin layers, (..) For production runs, the simulation resolution is significantly higher compared to similar DNS (direct numerical simulations ) to accurately resolve the strong bursts that are connected to intermittency. >> Mathis Bode. 
Simulations of turbulence's smallest structures. Gauss Centre for Supercomputing. Jul 8, 2021. 


<< In turbulent jet flows, the phenomenon of external intermittency originates from a sharp layer, known as the turbulent/ non-turbulent interface, that separates the turbulent core from the surrounding irrotational fluid. First, it is shown that low-order and higher-order structure functions in both the core and the shear layer of the jet satisfy complete self-preservation, which means that structure functions are invariant with time and collapse over the entire range of scales, regardless of the set of length and velocity scales used for normalization. Next, the impact of external intermittency on small-scale turbulence is studied along the cross-wise direction by the self-similarity of structure functions. It is shown that structure functions exhibit from the centre toward the edge of the flow a growing departure from self-similarity and the prediction of classical scaling theories. By analysing statistics conditioned on the turbulent portion of the jet, it is demonstrated that this departure is primarily due to external intermittency and the associated similarity-breaking effect. >>️

Michael Gauding, Mathis Bode, et al. Self-similarity of turbulent jet flows with internal and external intermittency. Journal of Fluid Mechanics.  919 , 25, A41. doi: 10.1017/ jfm.2021.399. Jun 1,  2021.


Michael Gauding, Mathis Bode, et al. On the combined effect of internal and external intermittency in turbulent non-premixed jet flames. Proceedings of the Combustion Institute. 38, (2): 2767-2774. doi: 10.1016/ j.proci.2020.08.022. Dec 9, 2020.


keyword 'Intermittency' in ScienceDirect


Also

1939 - stocastici accessi (di traslitteranti ludi). Notes. Jan 11, 2006. 
(quasi-stochastic poetry )


2064 - on responses to deviant stimuli.
Notes. Sep 26, 2006. (quasi-stochastic poetry )