Translate

Visualizzazione post con etichetta drops. Mostra tutti i post
Visualizzazione post con etichetta drops. Mostra tutti i post

venerdì 22 marzo 2024

# gst: rearrangements of a jammed 2-D emulsion (during slow compression).

<< As amorphous materials get jammed, both geometric and dynamic heterogeneity are observed. (AA)  investigate the correlation between the local geometric heterogeneity and local rearrangements in a slowly compressed bidisperse quasi-two-dimensional emulsion system. The compression is driven by evaporation of the continuous phase. >>

<< droplets in heterogeneous local regions are more likely to have local rearrangements. These rearrangements are generally T1 events where two droplets converge toward a void, and two droplets move away from the void to make room for the converging droplets. Thus, the presence of the voids tends to orient the T1 events. >>️

<< The presence of a correlation between the structural quantities and the rearrangement dynamics remains qualitatively unchanged over the entire range of packing fractions observed. >>️

Xin Du, Eric R. Weeks. Rearrangements during slow compression of a jammed  two-dimensional emulsion. Phys. Rev. E 109, 034605. Mar 20,  2024.


Keywords: drops, droplets, droploids 


venerdì 4 febbraio 2022

# gst: apropos of apparent erratic dynamics, the self-organization of drops bouncing on a vertically-vibrated surface

<< A drop bouncing on a vertically-vibrated surface may self-propel forward by Faraday waves and travels along a fluid interface. >>

<< A fine anal­ysis of the pairwise density function shows that while being dynamic, time-evolving and presenting many in­dications of a good mixing in the phase space, the sys­tem adopts in average preferred distances which origin has been rationalized by analysing the internal symme­try of the waves. Thus (AA) have shed light numerically on a statistical many-body wave self-organisation in an apparent erratic dynamics. >>

Adrien Hélias, Matthieu Labousse. Statistical self-organization of walking drops. arXiv:2201.07689v1 [cond-mat.soft]. Jan 19, 2022.


Also

keywords: gst, drops, self-organization, erratic dynamics, erraticity



sabato 25 settembre 2021

# gst: ️apropos of spontaneous active matter, the active droploids.

<< Active matter comprises self-driven units, such as bacteria and synthetic microswimmers, that can spontaneously form complex patterns and assemble into functional microdevices. These processes are possible thanks to the out-of-equilibrium nature of active-matter systems, fueled by a one-way free-energy flow from the environment into the system. Here, (AA) take the next step in the evolution of active matter by realizing a two-way coupling between active particles and their environment, where active particles act back on the environment giving rise to the formation of superstructures. >>️

<< These structures hinge on mutually coupled structure formation processes of the colloids, which form an engine, and the surrounding solvent, which phase separates in regions of high colloidal density and encapsulates the engine within a droplet shell.  >>
Jens Grauer, Falko Schmidt, et al. Active droploids. arXiv:2109.10677v1 [cond-mat.soft]. Sep 22, 2021.


Also

keyword 'drop' | 'droplet' in FonT



keyword 'goccia' in Notes (quasi-stochastic poetry): 


keywords: gst, drops, droplets, colloids, active matter, active droploids, self-assembly, solitons.






lunedì 5 luglio 2021

# gst: apropos of (multitudes) of transitional droplets, when a liquid film collapses in a foam ...

<< Foams have unique properties that distinguish them from ordinary liquids and gases, and are ubiquitously observed in nature, both in biological systems and industrial products. >>
<< Once a crack appears near the border and a collapse front is formed, (AA) find that the curvature of the front reverses as it migrates, followed by the emergence and emission of droplets. (they) elucidate the origins of this behavior and discuss the stability of foams, establishing how the characteristic time scales of the process relate to each other. >>️

Naoya Yanagisawa, Marie Tani, Rei Kurita. Dynamics and mechanism of liquid film collapse in a foam. Soft Matter. 17, 1738-1745. Feb 17, 2021.


Also

keyword 'foam' in FonT


keyword 'collapse' in FonT


keyword 'schiuma' in Notes
(quasi-stochastic poetry)







mercoledì 5 maggio 2021

# gst: when and how a levitating droplet sings (as a pipe)

<< Sprinkle water onto a very hot pan, and you may notice that the droplets evaporate surprisingly slowly. They stick around because of what’s called the Leidenfrost effect—a thin layer of vapor forms between the droplets and the hot surface, insulating them from the heat, and keeping them from boiling off immediately. (..) droplets of water in this Leidenfrost regime emit periodic sounds, or beats.  >>️

<< While emitting sounds, the droplets oscillated as pulsing stars whose points moved radially in and out. (..) this vapor-layer frequency matched the period of the beats, and (AA) therefore concluded that vapor escaping from beneath the droplet was responsible for producing the periodic sounds. >>️

<< the frequency of the sounds made by a droplet depended on the droplet’s size—following the model of an organ pipe, whose tone depends on the velocity of sound and the length of the pipe. This implies that the sound production mechanism in a Leidenfrost droplet is similar to that of a wind instrument. >>
Erika K. Carlson. The Sounds of Levitating Water Droplets. Physics 13, s148. Nov 19, 2020.


Tanu Singla,  Marco Rivera. Sounds of Leidenfrost drops. Phys. Rev. Fluids 5, 113604. doi: 10.1103/ PhysRevFluids.5.113604. Nov 19, 2020.



sabato 1 agosto 2020

# GST: how to harvest energy from impacting droplets

AA << designed an electrical generator that can harvest energy from impacting droplets and other sources of mechanical energy. (..) The electrical generator can be explained as being a permanently charged capacitor, also known as an electret. >>

They << managed to convert 11.8% of the mechanical energy of an impacting droplet into electrical energy, which is a significant improvement compared to the efficiency of similar devices. Furthermore, they demonstrated that the energy harvesting efficiency does not degrade after 100 days, requiring only a single 15 minute charging cycle before long-term application. >>

K.W. Wesselink. Generator developed for harvesting energy from droplets. 
University of Twente. Jul 8, 2020.


Hao Wu, Niels Mendel, et al. Charge Trapping‐Based Electricity Generator (CTEG): An Ultrarobust and High Efficiency Nanogenerator for Energy Harvesting from Water Droplets. Advanced Materials. doi: 10.1002/ adma.202001699. July 6, 2020.


Hao Wu, Niels Mendel, et al. Energy harvesting from drops impacting onto charged surfaces. Phys. Rev. Lett. Jun 25, 2020.


Also





sabato 12 ottobre 2019

# gst: exploring the lifespan of a liquid droplet

<< Current theories state that the droplet's diameter-squared decreases in proportion to time (classical law); however, this period only accounts for a small portion of the drop's evolution. As the diameter approaches the unobservable micro- and nano-scale, molecular dynamics have to be used as virtual experiments and these show a crossover to a new behaviour, with the diameter now reducing in proportion to time (nano-scale law). >>

<< It is fascinating that intuition based on everyday observations are a hindrance when attempting to understand nanoscale flows, so that, as in this research, one has to lean on theory to enlighten us. >>  James Sprittles.

The lifespan of an evaporating liquid drop. University of Warwick. Oct 10, 2019.     https://m.phys.org/news/2019-10-lifespan-evaporating-liquid.html

Rana A.S., Lockerby D.A., Sprittles J.E.  Lifetime of a Nanodroplet: Kinetic Effects and Regime Transitions. Phys. Rev. Lett. 123, 154501 Oct 9, 2019.     https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.154501   

sabato 24 agosto 2019

# gst: active drops: from steady to chaotic self-propulsion

<< Individual chemically active drops suspended in a surfactant solution were observed to self-propel spontaneously with straight, helical, or chaotic trajectories. (..) strong advection (e.g., large droplet size) may destabilize a steadily self-propelling drop; once destabilized, the droplet spontaneously stops and a symmetric extensile flow emerges. If advection is strengthened even further in comparison with molecular diffusion, the droplet may perform chaotic oscillations. >>

Matvey Morozov, Sebastien Michelin. Nonlinear dynamics of a chemically-active drop: From steady to chaotic self-propulsion. J. Chem. Phys. 150, 044110 (2019). doi: 10.1063/1.5080539. Jan 31, 2019.  https://aip.scitation.org/doi/10.1063/1.5080539