Translate

Visualizzazione dei post in ordine di pertinenza per la query droplet. Ordina per data Mostra tutti i post
Visualizzazione dei post in ordine di pertinenza per la query droplet. Ordina per data Mostra tutti i post

giovedì 22 agosto 2024

# gst: spontaneous bouncing, trampolining, and hovering behaviors of a levitating water droplet without constraints.


<< The levitating Leidenfrost (LF) state of a droplet on a heated substrate is often accompanied by fascinating behaviors such as star-shaped deformations, self-propulsion, bouncing, and trampolining. These behaviors arise due to the vapor flow instabilities at the liquid-vapor interface beneath the droplet at sizes typically comparable to the capillary length scale of the liquid. >>

AA << report on the spontaneous bouncing, trampolining, and hovering behavior of an unconstrained LF water droplet. (..) the water droplet exhibits an increase in bouncing height at specific radii with intermittent reduction in the height of bounce leading to a quiescent LF state. The reemergence of the trampolining behavior from the quiescent hovering state without any external forcing is observed at sizes as low as 0.1 times the capillary length. (AA) attribute the droplet bouncing behavior to the dynamics of vapor flow beneath the LF droplet. >>

AA << propose that the trampolining behavior of the droplet at specific radii is triggered by harmonic and subharmonic resonance between the natural frequency of the vapor layer and Rayleigh frequency of the droplet. This proposed mechanism of resonance-driven trampolining of LF droplets is observed to be applicable for different liquids irrespective of the initial volume and substrate temperatures, thus indicating a universality of the behavior. (AA) attribute the intermittent trampolining events to the change in the natural frequency of the droplet and the vapor layer due to evaporative mass loss. >>

Pranjal Agrawal, Susmita Dash. Reemergence of Trampolining in a Leidenfrost Droplet. arXiv: 2408.02335v1 [physics.flu-dyn]. Aug 5, 2024. 


Keywords: gst, drop, droplet, droploid, behav, behaviour


giovedì 23 febbraio 2023

# gst: hidden complexity during the twinkle of a shrinking droplet


<< Captivating patterns found in the light scattered by an evaporating water droplet could be used to infer the properties of the droplet as it shrinks. >>

AA << collected the light that bounced off a spherical water droplet as the droplet shrunk, which happened naturally as it evaporated. The team observed twinkling patterns called Fano combs, which resemble the outlines of hedgehogs. >>

Ryan Wilkinson. Twinkling of a Shrinking Droplet Reveals Hidden Complexity. Physics 16, s9. Jan 24, 2023.

AA << then fully explain it by expanding the quantum analogy. This turns the droplet into an “optical atom" with angular momentum, tunneling, and excited states. >>

Javier Tello Marmolejo, Adriana Canales, et al. Fano Combs in the Directional Mie Scattering of a Water Droplet. Phys. Rev. Lett. 130, 043804. Jan 24, 2023.

Also

keyword 'evaporation' in FonT

keyword 'drop' | 'droplet' | 'droploids' in FonT



keyword 'goccia' in Notes 
(quasi-stochastic poetry): 


Keywords: gst, drop, droplet, shrink, shrinking droplet, evaporation, transition


lunedì 17 giugno 2024

# gst: breakup of Janus droplet in a bifurcating microchannel

<< Droplet breakup is frequently observed in natural and industrial processes (..)  Although valuable insights on the breakup mechanisms of single-phase droplets in microchannels have been provided over the past decades, the breakup physics of complex emulsions is still poorly understood. >>️

<< Spatially asymmetric Janus microdroplets, distinct from single-phase or double emulsion droplets possessing one uniform interface with the ambient phase, are anticipated to show unique breakup behaviors, which has not been explored.  >>️

AA << conduct both microfluidic experiments and three-dimensional lattice Boltzmann simulations to investigate the dynamic breakup of ionic liquid (IL)-water Janus droplets in an assembled 3D-printed microchannel with a bifurcation. >>️

<< Three different flow regimes are identified: (i) division into two daughter Janus droplets, (ii) breakup into a single-phase droplet and a smaller Janus droplet, and (iii) nonbreakup.  >>️

AA << find that the strong constraint effect of the main channel and large Ca_av (average capillary numbers) values are essential to the symmetrical breakup of Janus droplets. The tunnel between the mother droplet and the wall of the main channel, which allows the lateral shift of the Janus droplet, and moderate flow rates facilitate the breakup of the IL single-phase portion of Janus droplets.  >>

<< Through 90° rotation of the splitting microchannel, (AA) elucidate the distinctions in Janus droplet behaviors under two baffle orientations. Potential impacts of the oblique flow characteristic of [bmim]⁢Fe⁢Cl4-water Janus droplets on the droplet breakup are discussed. >>️
Hao Wang, Shiteng Wang, et al. Dynamic breakup of Janus droplet in a bifurcating microchannel. Phys. Rev. Fluids 9, 064203. Jun 11, 2024. 


Also: 'drop', 'droplet', 'droploid', in https://www.inkgmr.net/kwrds.html 

Keywords: gst, Janus, drop, droplet, droploid



giovedì 15 febbraio 2024

# gst: droplets scoot like caterpillars.

<< From swells in an ocean to ripples in a puddle, the shearing effect of wind blowing over a liquid is visible at all scales. This shear determines the interactions between Earth’s atmosphere and its surface water and, researchers now explain, the movement of liquid droplets that crawl up and down the window of a moving car in the rain. In a series of experiments, (AA) show that airflow triggers surface waves that cause such droplets to crawl like caterpillars before they break apart. >>️

<< At first, the airflow across the droplet’s surface caused the droplet to extend into an oval shape. The droplet also began to tilt, with the liquid piling up at the droplet’s downwind edge. When the drag force exerted by the airflow overcame the capillary force between the glycerin and the glass, the droplet began to slide and to stretch out even more. Surface waves then developed on the elongated droplet and traveled toward its leading edge. The waves induced a stable caterpillar-like motion, with the droplet stretching and contracting along its length. Eventually, beyond a threshold length that depended on the droplet’s volume, the caterpillar was no longer able to withstand the shearing force and broke into several droplets. >>️

AA << say that the behavior follows the same pattern as that of an elongated droplet sliding along an incline. >>
Rachel Berkowitz. Droplets Scoot Like Caterpillars. Physics 16, s110. Sep 1, 2023.

A. Chahine, J. Sebilleau, R. Mathis, D. Legendre. Caterpillar like motion of droplet in a shear flow. Phys. Rev. Fluids 8, 093601. Sep 1, 2023.

Also: drop, bubble, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, bubble, transition


mercoledì 12 marzo 2025

# gst: tandem droplets accelerated by continuous uniform airflow.

<< In a dense droplet environment, droplets influence each other's motion, deformation, and breakup behavior. The tandem droplet is a particularly relevant case for the study of its unsteady dynamic behavior. >>

<< A three-dimensional numerical simulation study was conducted to investigate the deformation process of tandem droplets under different conditions. >>

<< The results of the research show that under conditions of high density ratio and a significant Reynolds number, the edge morphological characteristics of droplets are predominantly influenced by the Rayleigh-Taylor instability. In the case of low density ratios, the pressure drag force on the leeward side exerts a dominant influence on the accelerated motion of the leading droplet. The shape of the droplet is significantly influenced by the vortex ring present in the recirculation region. The perturbation of the liquid edge induces the vortex ring to split into secondary vortex rings, which act back on the droplet, thereby affecting its morphological characteristics. The trailing droplet is subject to a reduction in cross-flow radius, drag coefficient, minimum length, and expansion speed of the liquid bag due to the influence of the wake of the leading droplet. The decrease in Reynolds number and relative distance leads to a stronger suppression effect, while the decrease in density ratio shortens the length of the recirculation region, thereby weakening the suppression of trailing droplets. >>

Shuting Peng, Fuzhen Chen, et al. Three-dimensional numerical simulation of tandem droplets accelerated by continuous uniform airflow. Phys. Rev. Fluids 10, 024304. Feb 25, 2025. 

Also: droplet, instability, vortex, behav, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, droplet, instability, vortex, behavior

venerdì 26 gennaio 2024

# gst: compression and fracture of ordered and disordered droplet rafts

AA << simulate a two-dimensional array of droplets being compressed between two walls. The droplets are adhesive due to an attractive depletion force. As one wall moves toward the other, the droplet array is compressed and eventually induced to rearrange. The rearrangement occurs via a fracture, where depletion bonds are quickly broken between a subset of droplets. >>

<< For monodisperse, hexagonally ordered droplet arrays, this fracture is preceded by a maximum force exerted on the walls, which drops rapidly after the fracture occurs. >>

<< In small droplet arrays a fracture is a single well-defined event, but for larger droplet arrays, competing fractures can be observed. These are fractures nucleated nearly simultaneously in different locations. >>

AA << also study the compression of bidisperse droplet arrays. The addition of a second droplet size further disrupts fracture events, showing differences between ideal crystalline arrays, crystalline arrays with a small number of defects, and fully amorphous arrays. >>
Pablo Eduardo Illing, Jean-Christophe Ono-dit-Biot, et al. Compression and fracture of ordered and disordered droplet rafts. Phys. Rev. E 109, 014610. Jan 17, 2024.

Also: drop, defect, fracture, crack, in https://www.inkgmr.net/kwrds.html

randa (quasi-stochastic poetry) https://inkpi.blogspot.com/search?q=randa

Keywords: gst, drop, droplet, raft, defect, fracture, crack



martedì 25 marzo 2025

# gst: droplet bag formation in turbulent airflows.


AA << present numerical simulations investigating the evolution of liquid droplets into baglike structures in turbulent airflows. The droplet bag breakup problem is of significance for many multiphase processes in scientific and engineering applications. Turbulent fluctuations are introduced synthetically into a mean flow, and the droplet is inserted when the air-phase turbulence reaches a statistically stationary state. The morphological evolution of the droplet under different turbulence configurations is retrieved and analyzed in comparison with laminar aerobreakup results. While the detailed evolution history of individual droplets varies widely between different realizations of the turbulent flow, common dynamic and morphological evolution patterns are observed. >>

<< The presence of turbulence is found to enhance the drag coefficient of the droplet as it flattens. At late times, the droplet becomes tilted and increasingly corrugated under strong turbulence intensity. (AA) quantify these phenomena and discuss their possible governing mechanisms associated with turbulence intermittency. >>

<< Lastly, the influences of liquid-gas viscosity ratio are examined and the implications of air-phase turbulence on the later bag film breakup process are discussed. >>️

Kaitao Tang, Thomas A. A. Adcock, Wouter Mostert. Droplet bag formation in turbulent airflows. Phys. Rev. Fluids 10, 033604. March 19, 2025.

Also: drop, droplet, droploid, turbulence, fluctuations, intermittency, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, turbulence, fluctuations, intermittency

giovedì 8 ottobre 2020

# gst: observing the crystallization process in a droplet

<< Crystallization is the assembly of atoms or molecules into highly ordered solid crystals, which occurs in natural, biological, and artificial systems. However, crystallization in confined spaces, such as the formation of the protein shell of a virus, is poorly understood. Researchers are trying to control the structure of the final crystal formed in a confined space to obtain crystals with desired properties, which requires thorough knowledge of the crystallization process. >>

AA << used a droplet of a colloid—a dispersion of liquid particles in another liquid, like milk—as a model for single atoms or molecules in a sphere. Unlike single atoms or molecules, which are too small to easily observe, the colloid particles were large enough to visualize using a microscope. This allowed the researchers to track the ordering of single particles in real time during crystallization. >>

<< We visualized the organization process of colloid particles in numerous droplets under different conditions to provide a picture of the crystallization process in a sphere, >> Peng Tan

<< Based on their observations, the team proposed that the crystallization process involved three stages: initial ordering on the surface "skin" of the droplet, nucleation and growth in the core of the droplet, and then slow ripening of the whole structure. First, a skin consisting of a single layer of ordered colloid particles rapidly formed on the droplet surface. Next, crystallization occurred in the core of the droplet, far from the crystallized skin. The competition between crystallization in these two regions controlled the structure of the final crystal. The researchers found that the "soft" (long-range) interactions between the negatively charged colloid particles affected their organization and the resulting crystal structure. These soft interactions are dominated by kinetics, that is, the interactions that form the fastest, rather than those that use the least energy to give the thermodynamically stable structure, illustrating that kinetics plays an important role in crystallization in a confined space. It was already known that thermodynamics contributes strongly to the final structure of crystals. >>

Having a ball: Crystallization in a sphere. University of Tokyo. Sep 21, 2020.


Chen Y., Yao Z., et al. Morphology selection kinetics of crystallization in a sphere. Nat. Phys. doi: 10.1038/ s41567-020-0991-9. Sep 21, 2020.


Also

Control of material crystallization by agitation. Osaka University. Jun 08, 2017.


keyword 'drop' or 'droplet' in FonT





venerdì 3 settembre 2021

# gst: apropos of transitions, when a liquid droplet takes a turn (as a swimming behavior of amoebas)

Masatoshi Ichikawa and coll.  << have analyzed the conditions that cause self-propelling droplets to take linear or curved trajectories. The team studied water droplets between 60 and 800 μm across as they moved through oil that contained a surfactant. The droplets moved as a result of the Marangoni effect, in which an unequal distribution of surfactant molecules on the surface of each droplet creates a surface-tension gradient. (They) found that larger droplets tended to follow more tightly curved paths than smaller droplets. To understand the cause of this difference, Ichikawa and coll.  created a 3D model describing the concentration of surfactant on the surface of the droplets. They also studied the droplets’ internal flow, by observing the paths of small tracer particles. They characterized this flow as the sum of multiple patterns of fluid motion present in each droplet, including radial, dipolar, and quadrupolar motion. These patterns of motion were determined by the surface-tension gradients created by the uneven surfactant distribution on each droplet. In turn, such patterns controlled how the droplets moved. In particular, the team found that the angular difference between the dipolar and quadrupolar flows within droplets was strongly correlated with more curved droplet trajectories. In larger droplets, this angle changed more easily, causing the tightly curved trajectories. The researchers say that this fundamental mechanism may also influence the swimming behavior of amoebas.  >>️

Sophia Chen. When Liquid Droplets Take a Turn. Physics 14, s109. Aug 19, 2021.


Saori Suda, Tomoharu Suda, et al. Straight-to-Curvilinear Motion Transition of a Swimming Droplet Caused by the Susceptibility to Fluctuations. Phys. Rev. Lett. 127, 088005. Aug 19, 2021.








mercoledì 20 aprile 2022

# life: apropos of transitions, a leap from chemistry to biology, the hypothesis of self-assembling droplets, the 'droplet world'.


AA << identify conditions suitable for concurrent peptide generation and self-assembly, and (..) show how a proliferating peptide-based droplet could be created by using synthesised amino acid thioesters as prebiotic monomers. Oligopeptides generated from the monomers spontaneously formed droplets through liquid–liquid phase separation in water. The droplets underwent a steady growth–division cycle by periodic addition of monomers through autocatalytic self-reproduction. Heterogeneous enrichment of RNA and lipids within droplets enabled RNA to protect the droplet from dissolution by lipids. >>

Matsuo, M., Kurihara, K. Proliferating coacervate droplets as the missing link between chemistry and biology in the origins of life. Nat Commun 12, 5487. doi: 10.1038/ s41467-021-25530-6. Sep 24,  2021.


<< By constructing peptide droplets that proliferate with feeding on novel amino acid derivatives, we have experimentally elucidated the long-standing mystery of how prebiotic ancestors were able to proliferate and survive by selectively concentrating prebiotic chemicals, (..) Rather than an RNA world, we found that 'droplet world' may be a more accurate description, as our results suggest that droplets became evolvable molecular aggregates—one of which became our common ancestor. >> Muneyuki Matsuo.

Answering a century-old question on the origins of life. Hiroshima University. Sep 27, 2021. 


Also

keyword 'drop' | 'droplet' in FonT



keyword 'transition' in FonT


keyword 'transizione' in Notes (quasi-stochastic poetry): 


keywords: life, originsoflife, transitions, drop, droplet







lunedì 10 luglio 2023

# gst: myriad of complex dynamics from the atomization of acoustically levitated droplets

AA << report the dynamics of a droplet levitated in a single-axis acoustic levitator. The deformation and atomization behavior of the droplet in the acoustic field exhibits a myriad of complex phenomena, in sequences of steps. These include the primary breakup of the droplet through stable levitation, deformation, sheet formation, and equatorial atomization, followed by secondary breakup which could be umbrella breakup, bag breakup, bubble breakup or multistage breakup depending on the initial size of the droplet. >>

<< Both the primary and the secondary breakup of the droplet admit interfacial instabilities such as Faraday instability, Kelvin Helmholtz (KH) instability, RT instability, and RP instability and are well described with visual evidence. >>️

Sunil K. Saroj, Rochish M. Thaokar. Atomisation of an acoustically levitated droplet: Experimental observations of a myriad of complex phenomenon. arXiv: 2307.00400v1 [physics.flu-dyn]. Jul 1, 2023.

Also:  drop, transition, instability in https://www.inkgmr.net/kwrds.html

Keywords: gst, drop, droplet, transition, instability



venerdì 14 febbraio 2025

# gst: rise and fall of a multicomponent droplet in a surrounding fluid along a bumpy path.


<< The coupling between mass transfer and hydrodynamic phenomena in two-phase flow is not straightforward due to the different effects that can be encountered. >>

Here, AA << consider the case of a two-component droplet (one miscible and one immiscible in water) released in a 2D rectangular domain filled with water. Mass transfer occurs between the miscible element and the surrounding water, which leads to a density inversion that directly affects the droplet trajectory through buoyancy. >>

Mirantsoa Aime Rasolofomanana, Romain Le Tellier, Herve Henry. Rise and fall of a multicomponent droplet in a surrounding fluid: Simulation study of a bumpy path. Phys. Rev. Fluids 10, 023601. Feb 5, 2025. 

<< the coupling between the flow and the diffusion leads to a significant increase in the magnitude of the upward motion of the droplet before it starts to fall. >>️

arXiv: 2403.20040v2 [physics.flu-dyn]. Dec 18, 2024. 

Also: drop, droplet, droploid, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid 


giovedì 1 settembre 2022

# gst: apropos of transitions, evaporating binary microdroplets with phase segregation

<< Phase segregation triggered by selective evaporation can emerge in multicomponent systems, leading to complex physiochemical hydrodynamics. Recently, Li et al. (2018) and Kim & Stone (2018) reported a segregative behavior (i.e., demixing) in an evaporating binary droplet. In this work, by means of experiments and theoretical analysis, (AA) investigate the flow dynamics after the occurrence of the phase segregation. >>

<< First, (AA) experimentally reveal the overall physiochemical hydrodynamics of the evaporation process, including the segregative behavior and the resulting flow structure close to the substrate. By quantifying the evolution of the radial flow, (they) identify three successive life stages of the evaporation process. >>

<< At Stage I, a radially outward flow is observed. It is driven by the Marangoni effect. At the transition to Stage II, the radial flow partially reverses, starting from the contact line. This flow breaks the axial symmetry and remarkably is driven by the segregation itself. Finally at Stage III, the flow decays as the evaporation gradually ceases. At this stage the segregation has grown to the entire droplet, and the flow is again controlled by the Marangoni effect. The resulting Marangoni flow homogenizes the distribution of the entrapped volatile water over the whole droplet. >>️

Yaxing Li, Pengyu Lv, et al. Physiochemical hydrodynamics of the phase segregation in an evaporating binary microdroplet.arXiv:2208.07861v1 [physics.flu-dyn]  Aug 16, 2022.

Marangoni effect


Also

keyword 'drop' | 'droplet' in FonT


Keywords: gst, droplet, transition, evaporation, phase transition, phase segregation, Marangoni flow


martedì 22 ottobre 2019

# gst: the transition from quiescent spherical cap states to self-piloted motile states of volatile droplets

<< When a volatile solvent droplet is deposited on a freely floating swellable sheet, it can spontaneously become lobed, asymmetric, and either spin, slide or move via a combination of the two. This process of symmetry-breaking is a consequence of the solvent droplet swelling the membrane and its inhomogeneous evaporation from the membrane, coupled with the hydrodynamics within the droplet. By tuning the membrane thickness and the droplet size, (AA) find a critical threshold that determines the transition from a quiescent spherical cap state to a self-piloted motile state. Simple scaling laws determine the angular and linear velocities of the droplets, and a 1D analog experiment confirms the relative roles of evaporation, swelling and viscoelastic dissipation.  >>

Aditi Chakrabarti, Gary P. T. Choi, L. Mahadevan. Spontaneous spin-sliding of volatile drops on swelling sheets. 
arXiv:1910.07064v1 [cond-mat.soft]. Oct 15, 2019

https://arxiv.org/abs/1910.07064   

Also

keyword 'droplet' in FonT  

https://flashontrack.blogspot.com/search?q=droplet

mercoledì 5 maggio 2021

# gst: when and how a levitating droplet sings (as a pipe)

<< Sprinkle water onto a very hot pan, and you may notice that the droplets evaporate surprisingly slowly. They stick around because of what’s called the Leidenfrost effect—a thin layer of vapor forms between the droplets and the hot surface, insulating them from the heat, and keeping them from boiling off immediately. (..) droplets of water in this Leidenfrost regime emit periodic sounds, or beats.  >>️

<< While emitting sounds, the droplets oscillated as pulsing stars whose points moved radially in and out. (..) this vapor-layer frequency matched the period of the beats, and (AA) therefore concluded that vapor escaping from beneath the droplet was responsible for producing the periodic sounds. >>️

<< the frequency of the sounds made by a droplet depended on the droplet’s size—following the model of an organ pipe, whose tone depends on the velocity of sound and the length of the pipe. This implies that the sound production mechanism in a Leidenfrost droplet is similar to that of a wind instrument. >>
Erika K. Carlson. The Sounds of Levitating Water Droplets. Physics 13, s148. Nov 19, 2020.


Tanu Singla,  Marco Rivera. Sounds of Leidenfrost drops. Phys. Rev. Fluids 5, 113604. doi: 10.1103/ PhysRevFluids.5.113604. Nov 19, 2020.



lunedì 21 maggio 2018

# gst: the intricate dynamics of a splashing droplet

<< at all times, the rim thickness is governed by a local instantaneous Bond number equal to unity, defined with the instantaneous, local, unsteady rim acceleration. This criterion is found to be robust and universal for a family of unsteady inviscid fluid sheet fragmentation phenomena, from impacts of drops on various surface geometries to impacts on films >>

Wang Y, Dandekar R, et al. Universal Rim Thickness in Unsteady Sheet Fragmentation. Phys. Rev. Lett. 120, 204503. doi: 10.1103/PhysRevLett.120.204503. May 16, 2018.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.204503

<< Because all these features change constantly over a short period of time, extracting high-accuracy, unbiased measurements in the data is quite tricky (..) Classical algorithms are unable to capture all of these details >> Lydia Bourouiba.

<< In contrast, her team’s algorithms can automatically discern a splashing droplet’s rim and distinguish it from the smaller droplets that spray out from the rim, and the ligaments that form around the rim >>

Jennifer Chu. New theory describes intricacies of a splashing droplet. MIT. May 17, 2018.

http://news.mit.edu/2018/new-theory-describes-intricacies-splashing-droplet-0516

https://m.phys.org/news/2018-05-theory-intricacies-splashing-droplet.html 

giovedì 31 ottobre 2019

# gst: spontaneous spin-sliding of volatile drops

<< When a volatile solvent droplet is deposited on a freely floating swellable sheet, it can spontaneously become lobed, asymmetric, and either spin, slide or move via a combination of the two.  This process of symmetry-breaking is a consequence of the solvent droplet swelling the membrane and its inhomogeneous evaporation from the membrane, coupled with the hydrodynamics within the droplet. By tuning the membrane thickness and the droplet size, (AA) find a critical threshold that determines the transition from a quiescent spherical cap state to a self-piloted motile state.>>

Aditi Chakrabarti, Gary P. T. Choi, L. Mahadevan. Spontaneous spin-sliding of volatile drops on swelling sheets. arXiv:1910.07064v1 [cond-mat.soft]  Oct 15, 2019. 

https://arxiv.org/abs/1910.07064   

giovedì 9 settembre 2021

# gst: apropos of unexpected thresholds, the minimum temperature for levitating a droplet

<< During the Leidenfrost effect, a thin insulating vapor layer separates an evaporating liquid from a hot solid. (AA) demonstrate that Leidenfrost vapor layers can be sustained at much lower temperatures than those required for formation. >>

<< the explosive failure point is nearly independent of material and fluid properties, suggesting a purely hydrodynamic mechanism determines this threshold. >>️

Dana Harvey, Joshua Mendez Harper, Justin C. Burton. Minimum Leidenfrost Temperature on Smooth Surfaces. Phys. Rev. Lett. 127, 104501. Sep 1, 2021.


Christopher Crockett. The Minimum Temperature for Levitating Droplets. Physics 14, s107. Sep 1, 2021.


Also

keyword 'drop' | 'droplet' in FonT



keywords: gst, drop, droplet, waves, buckling, lubrication, convection, interfacial flows, threshold, levitation, bubble.

venerdì 6 dicembre 2024

# gst: anomalous oscillation modes of (superfluid) pendant droplets; horizontal translation on a flat surface, bouncing off at the corner and vertical oscillations at the edge.

<< Droplets should exhibit various dynamical phenomena when adhered to a surface; not all of them are realized in classical fluids. Visualization of superfluid  4^He (helium-4) pendant droplets revealed that the droplets were horizontally translated on a flat surface, bouncing off at the corner, known as the Noether mode that reflects the translation symmetry. >>️

<< The droplets exhibited another mode in vertical oscillations with high amplitude that included oscillation of the droplet edge. The oscillation period remained constant even as the droplets grew, exhibiting an anomalously weak size dependence. The high mobility of the droplet edges owing to the superfluidity was a crucial factor for the appearance of these anomalous modes. >>️

Keita Onodera, Ryuma Nagatomo, et al. Anomalous Oscillation Modes of Superfluid Pendant Droplets. Phys. Rev. Lett. 133, 216001. Nov 19, 2024.

Also: drop, droplet, droploid, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, transition


mercoledì 10 aprile 2024

# gst: exploring the on-demand dynamical generation of a plethora of dispersive shock waves arising in attractive one-dimensional droplet-bearing environment.

AA << demonstrate the controllable generation of distinct types of dispersive shock-waves emerging in a quantum droplet bearing environment with the aid of step-like initial conditions. Dispersive regularization of the ensuing hydrodynamic singularities occurs due to the competition between meanfield repulsion and attractive quantum fluctuations. This interplay delineates the dominance of defocusing (hyperbolic) and focusing (elliptic) hydrodynamic phenomena respectively being designated by real and imaginary speed of sound. >>

<< Surprisingly, dispersive shock waves persist across the hyperbolic-to-elliptic threshold, while a plethora of additional wave patterns arise, such as rarefaction waves, traveling dispersive shock waves, (anti)kinks and droplet wavetrains. >>

AA << results pave the way for unveiling a multitude of unexplored coherently propagating waveforms in such attractively interacting mixtures. >>

Sathyanarayanan Chandramouli, Simeon I. Mistakidis, Garyfallia C. Katsimiga, Panayotis G. Kevrekidis. 
Dispersive shock waves in a one-dimensional droplet-bearing environment. arXiv: 2404.02998v2 [nlin.PS]. Apr 5, 2024. 

Also: waves, drop, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, waves, drops