Translate

Visualizzazione post con etichetta phase transition. Mostra tutti i post
Visualizzazione post con etichetta phase transition. Mostra tutti i post

venerdì 13 giugno 2025

# gst: self-organization to multicriticality; when a system can self-organize to a new type of phase transition while staying on the verge of another.

<< Self-organized criticality is a well-established phenomenon, where a system dynamically tunes its structure to operate on the verge of a phase transition. Here, (AA) show that the dynamics inside the self-organized critical state are fundamentally far more versatile than previously recognized, to the extent that a system can self-organize to a new type of phase transition while staying on the verge of another. >>

<< In this first demonstration of self-organization to multicriticality, (AA) investigate a model of coupled oscillators on a random network, where the network topology evolves in response to the oscillator dynamics. (They) 
 show that the system first self-organizes to the onset of oscillations, after which it drifts to the onset of pattern formation while still remaining at the onset of oscillations, thus becoming critical in two different ways at once. >>
 
<< The observed evolution to multicriticality is robust generic behavior that (AA) expect to be widespread in self-organizing systems. Overall, these results offer a unifying framework for studying systems, such as the brain, where multiple phase transitions may be relevant for proper functioning.>>

Silja Sormunen, Thilo Gross, Jari Saramäki. Self-organization to multicriticality. arXiv: 2506.04275v1 [nlin.AO]. Jun 4, 2025. 

Also: network, random, self-assembly, transition, brain, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, network, random, self-assembly, transition, phase transition, multiple phase transitions, self-organizing systems, self-organized criticality, multicriticality, brain.

giovedì 1 settembre 2022

# gst: apropos of transitions, evaporating binary microdroplets with phase segregation

<< Phase segregation triggered by selective evaporation can emerge in multicomponent systems, leading to complex physiochemical hydrodynamics. Recently, Li et al. (2018) and Kim & Stone (2018) reported a segregative behavior (i.e., demixing) in an evaporating binary droplet. In this work, by means of experiments and theoretical analysis, (AA) investigate the flow dynamics after the occurrence of the phase segregation. >>

<< First, (AA) experimentally reveal the overall physiochemical hydrodynamics of the evaporation process, including the segregative behavior and the resulting flow structure close to the substrate. By quantifying the evolution of the radial flow, (they) identify three successive life stages of the evaporation process. >>

<< At Stage I, a radially outward flow is observed. It is driven by the Marangoni effect. At the transition to Stage II, the radial flow partially reverses, starting from the contact line. This flow breaks the axial symmetry and remarkably is driven by the segregation itself. Finally at Stage III, the flow decays as the evaporation gradually ceases. At this stage the segregation has grown to the entire droplet, and the flow is again controlled by the Marangoni effect. The resulting Marangoni flow homogenizes the distribution of the entrapped volatile water over the whole droplet. >>️

Yaxing Li, Pengyu Lv, et al. Physiochemical hydrodynamics of the phase segregation in an evaporating binary microdroplet.arXiv:2208.07861v1 [physics.flu-dyn]  Aug 16, 2022.

Marangoni effect


Also

keyword 'drop' | 'droplet' in FonT


Keywords: gst, droplet, transition, evaporation, phase transition, phase segregation, Marangoni flow