Translate

Visualizzazione post con etichetta elastic. Mostra tutti i post
Visualizzazione post con etichetta elastic. Mostra tutti i post

giovedì 20 giugno 2024

# gst: elasticity of fibres prefers the chaos of turbulence.

FIG. 4. Maximal Lyapunov exponents λ1 associated with the flow regions sampled by the fibre centre of masses in a 3D turbulent flow. 

<< Turbulent flows are ubiquitous in nature and are responsible for numerous transport phenomena that help sustain life on earth. >>️

AA << have shown that the stretching of fibres is due only to elasticity and their inertia playing a minimal role as they are advected by a turbulent carrier flow. A highly elastic fibre is much more likely to be stretched out and as a result prefers a “straighter” configuration rather than a coiled one. >>️

<< These inertial, elastic fibres then exhibit non-trivial preferential sampling of a 3D turbulent flow in a manner qualitatively similar to 2D turbulence (..). Inertia leads fibres away from vortical regions while their elasticity pulls them inside the vortices. Upto a moderate inertia (St ∼ O(1)), fibres increasingly prefer the straining regions of the flow, while at much larger inertia (St ≫ 1) they decorrelate from the flow and preference for straining regions begins to diminish again. >>️

<< However, owing to a large elasticity, fibres get trapped in vortical regions (at small St), as well as are unable able to exit the straining regions quickly. A more elastic and extensible fibre is, thus, more likely to spend longer times in both vortical and the straining regions of the flow. >>️

<< This picture of preferential sampling of a 3D turbulent flow by elastic, inertial fibres is also confirmed by alternately studying the chaoticity of the sampled flow regions via Lyapunov Exponents. Less elastic fibres prefer less chaotic (vortical) regions of the flow while more chaotic (straining) regions are preferred at large Wi. LEs also confirm that preferential sampling has a non-monotonic dependence on St for small elasticity but which is lost when Wi becomes very large.  >>

<< It would (..) be even more interesting to see how chaotic the fibre trajectories themselves are and what that has to say about fibre dynamics in turbulent flows. >>️
Rahul K. Singh. Elasticity of fibres prefers the chaos of turbulence. arXiv: 2406.06033v1. Jun 10, 2024.

Also: elastic, chaos, turbulence, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, elastic, chaos, turbulence


giovedì 9 maggio 2024

# gst: bubble phases sliding over periodically modulated substrates

AA << analyze a bubble-forming system composed of particles with competing long-range repulsive and short-range attractive interactions driven over a quasi-one-dimensional periodic substrate. >>️

They << find various pinned and sliding phases as a function of substrate strength and drive amplitude. When the substrate is weak, a pinned bubble phase appears that depins elastically into a sliding bubble lattice. For stronger substrates, (AA) find anisotropic bubbles, disordered bubbles, and stripe phases. Plastic depinning occurs via the hopping of individual particles from one bubble to the next in a pinned bubble lattice, and as the drive increases, there is a transition to a state where all of the bubbles are moving but are continuously shedding and absorbing individual particles. This is followed at high drives by a moving bubble lattice in which the particles can no longer escape their individual bubbles. >>️

<< When the bubbles shrink due to an increase in the attractive interaction term, they fit better inside the pinning troughs and become more strongly pinned, leading to a reentrant pinning phase. For weaker attractive terms, the size of the bubbles becomes greater than the width of the pinning troughs and the depinning becomes elastic with a reduced depinning threshold. >>
C. Reichhardt, C.J.O. Reichhardt. Sliding dynamics for bubble phases on periodic modulated substrates. Phys. Rev. Research 6, 023116. May 2, 2024.

Also: bubble, elastic, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, pinned bubble, elastic, transition




sabato 13 aprile 2024

# gst: evolving disorder and chaos induces acceleration of elastic waves.

<< Static or frozen disorder, characterised by spatial heterogeneities, influences diverse complex systems, encompassing many-body systems, equilibrium and nonequilibrium states of matter, intricate network topologies, biological systems, and wave-matter interactions. >>

AA << investigate elastic wave propagation in a one-dimensional heterogeneous medium with diagonal disorder. (They) examine two types of complex elastic materials: one with static disorder, where mass density randomly varies in space, and the other with evolving disorder, featuring random variations in both space and time. (AA) results indicate that evolving disorder enhances the propagation speed of Gaussian pulses compared to static disorder. Additionally, (They) demonstrate that the acceleration effect also occurs when the medium evolves chaotically rather than randomly over time. The latter establishes that evolving randomness is not a unique prerequisite for observing wavefront acceleration, introducing the concept of chaotic acceleration in complex media. >>️

M. Ahumada, L. Trujillo, J. F. Marín. Evolving disorder and chaos induces acceleration of elastic waves. arXiv: 2403.02113v1 [cond-mat.dis-nn]. Mar 4, 2024. 

Also: waves, elastic, chaos, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, waves, elastic, chaos, transition


mercoledì 3 aprile 2024

# gst: elastomers fail from the edge.



<< The performance of soft devices is limited by the fracture resistance of elastomers. (..) A key observation is that thicker elastomers can be significantly tougher than thinner ones. (AA) show that this surprising toughness enhancement in thick samples emerges from the 3D geometry of the fracture process. In contrast to the classical picture of a 2D crack, failure is driven by the growth of two separate “edge” cracks that nucleate early on at a sample’s sides. As loading is increased, these cracks propagate in towards the sample midplane. When they merge, samples reach their ultimate failure strength. In thicker samples, edge cracks need to propagate farther before meeting, resulting in increased sample toughness. (AA) demonstrate that edge-crack growth is controlled by the elastomer’s strain-stiffening properties. >>
Nan Xue, Rong Long, Eric R. Dufresne, Robert W. Style. Elastomers Fail from the Edge. Phys. Rev. X 14, 011054. March 22, 2024. 

Also: elastic, crack, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, elastic, crack, elastomers, fracture


giovedì 28 marzo 2024

# evol: emergence of single vs. multi-state allostery

      FIG. 1. The elastic network model

<< Allostery, the change of activity of a  macromolecule in response to a perturbation at a distance from its active site, is thought to be a ubiquitous feature of proteins. Initially described in the context of multimeric proteins, it is now understood to underlie the regulation of proteins with diverse structural architectures, from receptors to signaling proteins and metabolic enzymes. >>️

<< Here, (AA) analyze a simplified model of protein allostery under a range of physical and evolutionary constraints. (They) find that a continuum of mechanisms between two archetypes emerges through evolution. In one limit, a single-state mechanism exists where ligand binding induces a displacement along a single normal mode, and in the other limit, a multi-state mechanism exists where ligand binding induces a switch across an energy barrier to a different stable state. Importantly, whenever the two mechanisms are possible, the multi-state mechanism confers a stronger allosteric effect and thus a selective advantage. >>
Eric Rouviere, Rama Ranganathan, Olivier Rivoire. Emergence of Single- versus Multi-State Allostery. PRX Life 1, 023004. Nov 9, 2023.


Also: allosterico in Notes 
(quasi-stochastic poetry)

Keywords: gst, allostery, elastic, evolution


martedì 31 ottobre 2023

# gst: how to create a helix from a straight rod, “twist” or “bend” approaches.

<< There are two independent ways of creating a helix from a straight rod: curl the rod into a circle and then twist the rod all along its length to convert the ring into a helix (“twist” method), or deform the rod into a sine wave and then bend it with a sinusoidal distortion that curls at right angles to the first sine wave (“bend” method). Both procedures produce the same shape, but they generate different internal stresses within the rod, and their implementations require different amounts of energy. >>️

AA << say that their experiments could serve as a model for many physical systems that undergo handedness transitions, including the tendrils of plants, the flagella of microorganisms, and the strands of DNA molecules.  >>
David Ehrenstein. Two Experimental Observations of Helix Reversals. Physics 16, s158. Oct 24, 2023.  

Paul M. Ryan, Joshua W. Shaevitz,  Charles W. Wolgemuth. Bend or Twist? What Plectonemes Reveal about the Mysterious Motility of Spiroplasma. Phys. Rev. Lett. 131, 178401. Oct 24, 2023. 

Emilien Dilly, Sebastien Neukirch, Julien Derr, Drazen Zanchi. Traveling Perversion as Constant Torque Actuator. Phys. Rev. Lett. 131, 177201. Oct 24, 2023. 

Also: elastic, swim, in https://www.inkgmr.net/kwrds.html

Keywords: gst, elastic, elastic deformation, swimming



sabato 21 ottobre 2023

# gst: local elastic properties of strongly disordered matter

<< The local elastic properties of strongly disordered material are investigated using the theory of correlated random matrices. A significant increase in stiffness is shown in the interfacial region, the thickness of which depends on the strength of disorder. It is shown that this effect plays a crucial role in nanocomposites, in which interfacial regions are formed around each nanoparticle. >>️

D. A. Conyuh, A. A. Semenov, Y. M. Beltukov. Effective elastic moduli of composites with a strongly disordered host material. Phys. Rev. E 108, 045004. Oct 20, 2023. 

Also: elastic, noise, particle, nano, in https://www.inkgmr.net/kwrds.html

Keywords: gst, elastic, noise, particle, nano


mercoledì 24 maggio 2023

# gst: intricate transitions in elastoactive structures.

<< The interplay between activity and elasticity often found in active and living systems triggers a plethora of autonomous behaviors ranging from self-assembly and collective motion to actuation. Among these, spontaneous self-oscillations of mechanical structures is perhaps the simplest and most widespread type of nonequilibrium phenomenon. >>️

<< Here, (AA) introduce a centimeter-sized model system for one-dimensional elastoactive structures. >>️

<< such structures exhibit flagellar motion when pinned at one end, self-snapping when pinned at two ends, and synchronization when coupled together with a sufficiently stiff link. (..) these transitions can be described quantitatively by simple models of coupled pendula with follower forces. >>️

Ellen Zheng, Martin Brandenbourger, et al. Self-Oscillation and Synchronization Transitions in Elastoactive Structures. Phys. Rev. Lett. 130, 178202. April 25, 2023. 

Also:  transition, particle, self-assembly, elastic, pendulum in https://www.inkgmr.net/kwrds.html

Keywords: gst, transition, particle, self-assembly, elastic, pendulum