AA << consider a class of n-dimensional, n≥2, piecewise linear discontinuous maps that can exhibit a new type of attractor, called a weird quasiperiodic attractor. While the dynamics associated with these attractors may appear chaotic, (They) prove that chaos cannot occur. The considered class of n-dimensional maps allows for any finite number of partitions, separated by various types of discontinuity sets. The key characteristic, beyond discontinuity, is that all functions defining the map have the same real fixed point. These maps cannot have hyperbolic cycles other than the fixed point itself. >>
Laura Gardini, Davide Radi, et al. Abundance of weird quasiperiodic attractors in piecewise linear discontinuous maps. arXiv: 2504.04778v1 [math.DS]. Apr 7, 2025.
Also: attractor, chaos, in https://www.inkgmr.net/kwrds.html
Keywords: gst, attractors, weird attractors, chaos
Nessun commento:
Posta un commento
Nota. Solo i membri di questo blog possono postare un commento.