Translate

Visualizzazione post con etichetta drop interactions. Mostra tutti i post
Visualizzazione post con etichetta drop interactions. Mostra tutti i post

lunedì 8 aprile 2024

# gst: apropos of evaporation, puncturing of active drops

<< By virtue of self-propulsion, active particles impart intricate stresses to the background fluids. (..) this active stress can be utilized to greatly control evaporation dynamics of active drops. >>

AA << discover a new phenomenon of puncturing of the active drops, where the air-liquid interface of the drop undergoes spontaneous tearing and there occurs a formation of a new three-phase contact line due to the liquid-air interface hitting the liquid-solid interface through evaporation-driven mass loss. Post puncturing, (AA) see an inside-out evaporation of the drop, where the new contact line sweeps towards the pinned outer contact line of the drops, contrasting regular drops that straightaway shrink to zero volume with self-similar shape. >>

<< Furthermore, (..) the activity inside the drops can manipulate the three-phase contact-line dynamics, which for contractile drops can result in an up to 50% enhanced lifetime of the drop and 33% quicker evaporation for extensile drops. By analyzing the flux distribution inside the drop, (AA) gain insights on nonintuitive deposition patterns (e.g., ring galaxy type deposits that demonstrate controllable spatial gradients in the concentrations of the deposited particles) of active particles, which are oftentimes biological substances or bimetallic nanoparticles of interest. >>

Ghansham Rajendrasingh Chandel, Vishal Sankar Sivasankar, Siddhartha Das. Evaporation of active drops: Puncturing drops and particle deposits of ring galaxy patterns. Phys. Rev. Fluids 9, 033603. Mar 27, 2024. 

Also: drop, particle, evaporation, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, particle, evaporation, transition, drop interactions, droplet, droploid


mercoledì 21 giugno 2023

# gst: nonmonotonic appearance- disappearance behaviors of two unequal-sized miscible liquid drops

<< the coalescence process of two miscible liquid drops exhibits a nonmonotonic behavior of partial coalescence from appearance to disappearance and then reappearance with decreasing surface tension ratio. The strong lifting force of the intense Marangoni flow causes the reappearance of partial coalescence at higher surface tension difference between two drops. When the Ohnesorge number increases, high viscous forces restrict the propagation of Marangoni flow and do not favor the pinch-off, even in the presence of a significant surface tension difference. The generation of secondary drops at a considerable surface tension difference is also prevented for small parent drop size ratio. >>️

Swati Singh, Arun K. Saha. Effect of surface tension gradients on coalescence dynamics of two unequal-sized drops. Phys. Rev. Fluids 8, 053604. May 24, 2023. 

Also:  'drop' in https://www.inkgmr.net/kwrds.html  

Keywords: gst, behavior, drop, drop breakup, drop coalescence, drop interactions, droplet, droploid