Translate

Visualizzazione post con etichetta random walks. Mostra tutti i post
Visualizzazione post con etichetta random walks. Mostra tutti i post

lunedì 2 dicembre 2024

# gst: apropos of diffusive anomalies, anomalous diffusion of active Brownian particles in responsive elastic gels.

Here, AA << examine via extensive computer simulations the dynamics of SPPs (self-propelled particles) in deformable gellike structures responsive to thermal fluctuations. (AA) treat tracer particles comparable to and larger than the mesh size of the gel. (They) observe distinct trapping events of active tracers at relatively short times, leading to subdiffusion; it is followed by an escape from meshwork-induced traps due to the flexibility of the network, resulting in superdiffusion. >>

AA << thus find crossovers between different transport regimes. (They) also find pronounced nonergodicity in the dynamics of SPPs and non-Gaussianity at intermediate times. The distributions of trapping times of the tracers escaping from “cages” in (..)  quasiperiodic gel often reveal the existence of two distinct timescales in the dynamics. At high activity of the tracers these timescales become comparable. >>

<< Furthermore, (AA) find that the mean waiting time exhibits a power-law dependence on the activity of SPPs (in terms of their Péclet number). (Their) results additionally showcase both exponential and nonexponential trapping events at high activities. Extensions of this setup are possible, with the factors such as anisotropy of the particles, different topologies of the gel network, and various interactions between the particles (also of a nonlocal nature) to be considered. >>

Koushik Goswami, Andrey G. Cherstvy, et al. Anomalous diffusion of active Brownian particles in responsive elastic gels: Nonergodicity, non-Gaussianity, and distributions of trapping times. Phys. Rev. E 110, 044609. Oct 29, 2024.

Also: particle, random, escape, network, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, particle, random, random walks, escape, network


lunedì 6 maggio 2024

# gst: random walk model for dual cascades in wave turbulence.

<< Dual cascades in turbulent systems with two conserved quadratic quantities famously arise in both two-dimensional hydrodynamic turbulence and also in wave turbulence based on four-wave interactions. >>

<< in wave turbulence the systematic spectral fluxes observed in a dual cascade do not require an irreversible dynamical mechanism, rather, they arise as the inevitable outcome of blind chance. >>️️

Oliver Bühler. Random walk model for dual cascades in wave turbulence. Phys. Rev. E 109, 055102. May 1, 2024. 

Also: waves, turbulence, random, weak, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, waves, turbulence, weak turbulence, random, random walks


lunedì 14 agosto 2023

# gst: rich behaviors from stochastic walking with variable long jumps.


AA << propose a generalized model where the random walker takes stochastic jumps of lengths proportional to its present position with certain probability, otherwise it makes forward and backward jumps of fixed (unit) length with given rates. The model exhibits a rich stochastic dynamic behavior.  (AA) obtain exact analytic results for the first two moments of the walker's displacement and show that a phase transition from a diffusive to superdiffusive regime occurs if the stochastic jumps of lengths that are twice (or more) of its present positions are allowed. This phase transition is accompanied by a reentrant diffusive behavior. >> 

Upendra Harbola. Stochastic walker with variable long jumps. Phys. Rev. E 108, 014135. July 28, 2023. 

Also: walk, noise, fluctuations, dance,  in: https://www.inkgmr.net/kwrds.html

Keywords: gst, walks, random walks, noise, fluctuations



venerdì 2 agosto 2019

# gst: dissolve into randomness, the kinetics

AA << have developed mathematical tools that send that shot across the bow-they determine when randomness emerges in any stochastic (random) system, answering a long-standing question: When does randomness set in during a random walk? >>

<< We are trying to describe an effect as exactly as possible irrespective of the cause. >> Rajan K. Chakrabarty

<< physicists normally solve problems by mathematically describing a cause and effect and marrying the two for a solution. But this new tool cares nothing about the cause, only about mathematically capturing the effect. >>

Tony Fitzpatrick. New tools reveal prelude to chaos. Washington University in St. Louis. Jun 6, 2018

https://m.phys.org/news/2018-06-tools-reveal-prelude-chaos.html  

Pai Liu, William R. Heinson, et al. Establishing the kinetics of ballistic-to-diffusive transition using directional statistics. Phys. Rev. E 97, 042102. Apr 4, 2018.

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.042102