AA consider << two kinds of self-propelled particles, A and B, that tend to align with particles from the same species and to antialign with the other. The model shows a flocking transition (..) it has a liquid-gas phase transition and displays micro-phase-separation in the coexistence region where multiple dense liquid bands propagate in a gaseous background. >>
<< The interesting features (..) are the existence of two kinds of bands, one composed of mainly A particles and one mainly of B particles, the appearance of two dynamical states in the coexistence region: the PF (parallel flocking) state in which all bands of the two species propagate in the same direction, and the APF (antiparallel flocking) state in which the bands of species A and species B move in opposite directions. When PF and APF states exist in the low-density part of the coexistence region they perform stochastic transitions from one to the other. The system size dependence of the transition frequency and dwell times show a pronounced crossover that is determined by the ratio of the band width and the longitudinal system size. >>
AA << work paves the way for studying multispecies flocking models with heterogeneous alignment interactions. >>
Swarnajit Chatterjee, Matthieu Mangeat, et al. Flocking of two unfriendly species: The two-species Vicsek model. Phys. Rev. E 107, 024607. Feb 14, 2023
Also
keyword 'swimmers' in FonT
Keywords: gst, flocking, particles, self-propelled particles, swimmers, microswimmers