Translate

sabato 22 novembre 2025

# gst: turbulence at low Reynolds numbers.

<< ️Turbulence -- ubiquitous in nature and engineering alike  -- is traditionally viewed as an intrinsically inertial phenomenon, emerging only when the Reynolds number (Re), which quantifies the ratio of inertial to dissipative forces, far exceeds unity. >>

<< ️Here, (AA) demonstrate that strong energy flux between different length scales of motion -- a defining hallmark of turbulence -- can persist even at Re ~ 1, thereby extending the known regime of turbulent flows beyond the classical high-Re paradigm. (They) show that scale-to-scale energy transfer can be recast as a mechanical process between turbulent stress and large-scale flow deformation. >>

<< ️In quasi-two-dimensional (quasi-2D) flows driven by electromagnetic forcing, (They) introduce directionally biased perturbations that enhance this interaction, amplifying the spectral energy flux by more than two orders of magnitude, even in the absence of dominant inertial forces. >>

<< ️This (AA) study establishes a new regime of 2D Navier-Stokes (N-S) turbulence, challenging long-standing assumptions about the high Re conditions required for turbulent flows. Beyond revising classical belief, (Their) results offer a generalizable strategy for engineering multiscale transport in flows that lack inertial dominance, such as those found in microfluidic and low-Re biological systems. >>

Ziyue Yu, Xinyu Si, Lei Fang. Turbulence at Low Reynolds Numbers. arXiv: 2511.05800v1 [physics.flu-dyn]. Nov 8, 2025.

Also: turbulence, chaos, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence, chaos,  transitions.

giovedì 20 novembre 2025

# gst: geometric intermittency in turbulence.

<< ️Equal-time scaling exponents in fully developed turbulence typically exhibit non anomalous scaling in the inverse cascade of two-dimensional (2D) turbulence and anomalous scaling in three dimensions. >>

<< ️(AA) have shown that intermittency in turbulence is not exhausted by longitudinal and transverse velocity increments: geometric increments of the velocity field display equally strong, and in some regimes stronger, multiscaling. This reveals a previously hidden intermittency in the 2D inverse cascade and identifies a universal class of geometric scaling exponents. >>

<< ️This, of course, leads to questions of whether long-lived vortical structures play a more significant role in making flows intermittent, especially in 2D, than appreciated hitherto. >>

<< ️(AA) results also suggest that the geometry of turbulent velocity fields plays a fundamental role in cascade dynamics and opens a route to probing intermittency, blind to conventional structure functions, in other flows. >>

Ritwik Mukherjee, Siddhartha Mukherjee, I. V. Kolokolov, et al. Geometric Intermittency in Turbulence. arXiv: 2511.06439v1 [physics.flu-dyn]. Nov 9, 2025.

Also: turbulence, intermittency, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence, intermittency, cascade dynamics, multiscaling, multiscaling 2D inverse cascade, 

martedì 18 novembre 2025

# gst: apropos of itinerant behaviors, from chaotic itinerancy to intermittent synchronization in complex networks.

<< ️Although synchronization has been extensively studied, important processes underlying its emergence have remained hidden by the use of global order parameters. Here, (AA) uncover how the route unfolds through a sequential transition between two well-known but previously unconnected phenomena: chaotic itinerancy (CI) and intermittent synchronization (IS). >>

<< ️Using a new symbolic dynamics, (They) show that CI emerges as a collective yet unsynchronized exploration of different domains of the high-dimensional attractor, whose dimension is reduced as the coupling increases, ultimately collapsing back into the reference chaotic attractor of an individual unit. At this stage, the IS can emerge as irregular alternations between synchronous and asynchronous phases. The two phenomena are therefore mutually exclusive, each dominating a distinct coupling interval and governed by different mechanisms. >>

<< ️Network structural heterogeneity enhances itinerant behavior since access to different domains of the attractor depends on the nodes' topological roles. The CI--IS crossover occurs within a consistent coupling interval across models and topologies. Experiments on electronic oscillator networks confirm this two-step process, establishing a unified framework for the route to synchronization in complex systems. >>

I. Leyva, Irene Sendiña-Nadal, Christophe Letellier, et al. From chaotic itinerancy to intermittent synchronization in complex networks. arXiv: 2511.09253v1 [nlin.AO]. Nov 12, 2025.

Also: network, behav, intermittency, transition, attractor, chaos, collapse, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, networks, behavior, intermittency, transitions, attractor, chaos, collapse, chaotic itinerancy, intermittent synchronization, structural heterogeneity, itinerant behavior.

lunedì 17 novembre 2025

# gst: effect of stochasticity on initial transients and chaotic itinerancy for a natural circulation loop.

<< ️The introduction of stochastic forcing to dynamical systems has been shown to induce qualitatively different behaviors, such as attractor hopping, to otherwise stable systems as they approach bifurcation. In this (AA) study, the effect of stochastic forcing on systems that have already undergone bifurcation and evolve on a chaotic attractor is explored. Markov and state-independent models of turbulence-induced stochasticity are developed, and their effects on a natural circulation loop operating in the chaotic regime are compared. >>

<< ️Stochasticity introduces considerable uncertainty into the duration of the initial chaotic transient but tends to accelerate it on average. An Ornstein-Uhlenbeck model of turbulent fluctuations is shown to produce results equivalent to a bootstrapped raw direct numerical simulation signal. >>

<< Similar, though less pronounced, effects are found for systems operating in the chaotic itinerant regime. The Markov model of chaotic itinerancy which is typically applied to this class of problems is shown to be invalid for this system and the Lorenz system, to which it has been applied in the past. >>

<< ️Off-discrete transitions and an upper limit on the time between flow reversals are explained by near misses of the attractor ruins caused by lingering excitation of high-order modes during chaotic itinerancy. >>

John Matulis, Hitesh Bindra. Effect of stochasticity on initial transients and chaotic itinerancy for a natural circulation loop. Phys. Rev. E 112, 044223. Oct 23, 2025

Also: disorder & fluctuations, turbulence, attractor, chaos, transition, uncertainty, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, disorder, fluctuations, turbulence, attractor, chaos, transition, uncertainty, stochasticity, flow instability, chaotic itinerancy, noise-induced transitions.

sabato 15 novembre 2025

# gst: vorticity-induced surfing and trapping in porous media

<< Microorganisms often encounter strong confinement and complex hydrodynamic flows while navigating their habitats. Combining finite-element methods and stochastic simulations, (AA) study the interplay of active transport and heterogeneous flows in dense porous channels. (They) find that swimming always slows down the traversal of agents across the channel, giving rise to robust power-law tails of their exit-time distributions. These exit-time distributions collapse onto a universal master curve with a scaling exponent of ≈ 3/2 across a wide range of packing fractions and motility parameters, which can be rationalized by a scaling relation. >> 

<< ️(AA) further identify a new motility pattern where agents alternate between surfing along fast streams and extended trapping phases, the latter determining the power-law exponent. Unexpectedly, trapping occurs in the flow backbone itself -- not only at obstacle boundaries -- due to vorticity-induced reorientation in the highly-heterogeneous fluid environment. >>

Pallabi Das, Mirko Residori, Axel Voigt, et al. Vorticity-induced surfing and trapping in porous media. arXiv: 2511.02471v1 [cond-mat.soft]. Nov 4, 2025.

Also: swim, microswimmers, intermittency, disorder, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, swim, microswimmers, intermittency, disorder, vortex, self-propel, run-and-tumble dynamics, hop-and-trap pattern, surf-and-trap motility pattern.

venerdì 14 novembre 2025

# gst: implementation of a generalized intermittency scenario in the Rossler dynamical system.

<< The realization of novel scenario involving transitions between different types of chaotic attractors is investigated for the Rossler system. Characteristic features indicative of the presence of generalized intermittency scenario in this system are identified. The properties of "chaos-chaos" transitions following the generalized intermittency scenario are analyzed in detail based on phase-parametric characteristics, Lyapunov characteristic exponents, phase portraits, and Poincare sections. >>

O.O. Horchakov, A.Yu. Shvets. Implementation of a generalized intermittency scenario in the Rossler dynamical system. arXiv: 2511.03364v1 [nlin.CD]. Nov 5, 2025.

Also: intermittency, attractor, chaos, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, intermittency, attractors, chaos, transitions, chaos-chaos transitions.

mercoledì 12 novembre 2025

# gst: experimental observation of hidden multistability in nonlinear systems.


<< ️Multistability, the coexistence of multiple stable states, is a cornerstone of nonlinear dynamical systems, governing their equilibrium, tunability, and emergent complexity. Recently, the concept of hidden multistability, where certain stable states evade detection via conventional continuous parameter sweeping, has garnered increasing attention due to its elusive nature and promising applications.  >>

<< ️In this Letter, (AA) present the first experimental observation of hidden multistability using a programmable acoustic coupled-cavity platform that integrates competing self-focusing and self-defocusing Kerr nonlinearities. Beyond established bistability, (They) demonstrate semi- and fully-hidden tristabilities by precisely programming system parameters. Crucially, the hidden stable states, typically inaccessible via the traditional protocol, are unambiguously revealed and dynamically controlled through pulsed excitation, enabling flexible transitions between distinct types of stable states. >>

Kun Zhang, Qicheng Zhang, Shuaishuai Tong, et al. Experimental Observation of Hidden Multistability in Nonlinear Systems. arXiv: 2511.04150v1 [nlin.CD]. Nov 6, 2025.

Also: instability, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, stability, multistability, hidden multistability, semi- fully-hidden tristabilities, pulsed excitation.