Translate

Visualizzazione post con etichetta swimmer. Mostra tutti i post
Visualizzazione post con etichetta swimmer. Mostra tutti i post

mercoledì 19 febbraio 2025

# gst: alignment-induced self-organization of autonomously steering microswimmers: turbulence, clusters, vortices, and jets.


<< Microorganisms can sense their environment and adapt their movement accordingly, which gives rise to a multitude of collective phenomena, including active turbulence and bioconvection. In fluid environments, collective self-organization is governed by hydrodynamic interactions. >>

<< By large-scale mesoscale hydrodynamics simulations, (AA) study the collective motion of polar microswimmers, which align their propulsion direction by hydrodynamic steering with that of their neighbors. The simulations of the employed squirmer model reveal a distinct dependence on the type of microswimmer—puller or pusher—flow field. No global polar alignment emerges in both cases. Instead, the collective motion of pushers is characterized by active turbulence, with nearly homogeneous density and a Gaussian velocity distribution; strong self-steering enhances the local coherent movement of microswimmers and leads to local fluid-flow speeds much larger than the individual swim speed. >>

<< Pullers exhibit a strong tendency for clustering and display velocity and vorticity distributions with fat exponential tails; their dynamics is chaotic, with a temporal appearance of vortex rings and fluid jets. >>

AA << results show that the collective behavior of autonomously steering microswimmers displays a rich variety of dynamic self-organized structures. >>

Segun Goh, Elmar Westphal, et al. Alignment-induced self-organization of autonomously steering microswimmers: Turbulence, clusters, vortices, and jets. Phys. Rev. Research 7, 013142. Feb 7, 2025. 

Also: swim, microswimmer, particle, turbulencechaos, noise, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, swim, swimmer, microswimmers, particle, turbulence, chaos, noise


lunedì 19 dicembre 2022

# gst: behavior of microswimmers in a vortex with translational and rotational noise

AA << propose a theoretical model to investigate the dynamics of elongated microswimmers in elementary vortices, namely active particles in two- and three-dimensional rotlets. A deterministic model first reveals the existence of bounded orbits near the centre of the vortex and unbounded orbits elsewhere. (AA) further discover a conserved quantity of motion that allows (..) to map the phase space according to the type of the orbit (bounded vs unbounded). (They) next introduce translational and rotational noise into the system. Using a Fokker--Planck formalism, (AA) quantify the quality of trapping near the centre of the vortex by examining the probability of escape and the mean time of escape from the region of deterministically bounded orbits. (AA) finally show how to use these findings to formulate a prediction for the radius of the depletion zone, which compares favourably with the experiments of Sokolov and Aranson (2016). >>

Ivan Tanasijevic, Eric Lauga. Microswimmers in vortices: Dynamics and trapping. arXiv: 2211.05866v1 [physics.bio-ph].  Nov 10, 2022. 

Also

'microswimmers' in FonT 

Keywords: gst, behav, translation,  rotation, trapping, noise, swimmer, swimming,  microswimmers, fluid dynamics, vortex, vortices, vortexes, vorticity




martedì 15 novembre 2022

# gst: self-buckling and self-writhing of semi-flexible Entities (among P. mirabilis)

<< Multi-flagellated microorganisms can buckle and writhe under their own activity as they swim through a viscous fluid. New equilibrium configurations and steady-state dynamics then emerge which depend on the organism's mechanical properties and on the oriented distribution of flagella along its surface. Modeling the cell body as a semi-flexible Kirchhoff rod and coupling the mechanics to a dynamically evolving flagellar orientation field, (AA) derive the Euler-Poincaré equations governing dynamics of the system, and rationalize experimental observations of buckling and writhing of elongated swarmer P. mirabilis cells. >>

<< A sequence of bifurcations is identified as the body is made more compliant, due to both buckling and torsional instabilities. The results suggest that swarmer cells invest no more resources in maintaining membrane integrity than is necessary to prevent self-buckling. >>
Wilson Lough, Douglas B. Weibel, et al. Self-buckling and self-writhing of semi-flexible microorganisms. arXiv: 2211.04381v1 [cond-mat.soft]. Nov 8, 2022. 

Also 

keyword 'swimming' in FonT

Keywords: gst, motility, swarm, swarming, swarmer, swim, swimming, swimmer, buckling, writhing. 


venerdì 22 ottobre 2021

# gst: the effect of noise on the dynamics of microswimmers in externally-driven fluid flows.

AA << have quantified the effect of noise on swimmer dynamics in a steady, two-dimensional hyperbolic fluid flow. In such a flow, swimmers are ultimately forced to escape to the left or the right, with their transient dynamics near the passive unstable fixed point determining which way they go. >>

<< Without noise, a swimmer’s fate is sealed based on its position relative to the SwIM (swimming invariant manifolds) in the xθ phase space. With noise, the swimmer’s motion is a stochastic process. >>

AA << calculated the steady-state orientation distributions of diffusive, run-and-tumble, or mixed swimmers in the hyperbolic flow. The fluctuations give some swimmers greater opportunity to cross the SwIM and exit on the opposite side than they would have without noise. There is however a maximal distance that swimmers can get on either side of the passive fixed point and still be able to swim back to the other side—this is where the stable BIMs (burning invariant manifolds) block inward swimming particles. >>

<< Fluctuations make it increasingly likely that a swimmer close to one of these BIMs does indeed end up crossing it, causing irreversible changes to the fluctuating swimmers’ trajectories (assuming negligible translational diffusion).  >>️

Simon A. Berman, Kevin A. Mitchell. Swimmer dynamics in externally-driven fluid flows: The role of noise. arXiv: 2108.10488v1 [physics.flu-dyn]. Aug 24, 2021.


keywords: gst, swimmer, swimming particle, fluid dynamics, chaotic dynamics, rotational diffusion, random fluctuation, tumbling, noise