<< Living materials at different length scales manifest active nematic features such as orientational order, nematic topological defects, and active nematic turbulence. Using numerical simulations (AA) investigate the impact of fluid inertia on the collective pattern formation in active nematics. >>️
<< an incremental increase in inertial effects due to reduced viscosity results in gradual melting of nematic order with an increase in topological defect density before a discontinuous transition to a vortex-condensate state. The emergent vortex-condensate state at low enough viscosities coincides with nematic order condensation within the giant vortices and the drop in the density of topological defects. (AA) further show flow field around topological defects is substantially affected by inertial effects. (..) no evidence of universal scaling at higher viscosities. >>
️
Roozbeh Saghatchi, Mehmet Yildiz, Amin Doostmohammadi. Nematic order condensation and topological defects in inertial active nematics. Phys. Rev. E 106, 014705. July 25, 2022.
Also: 'turbulence', 'vortex', 'defect', 'drop' in https://www.inkgmr.net/kwrds.html
Keywords: gst, behavior, collective behavior, patterns, turbulence, nematic turbulence, viscosity, vortex, defect, drop