<< Restart is a common strategy observed in nature that accelerates first-passage processes, and has been extensively studied using classical random walks. In the quantum regime, restart in continuous-time quantum walks (CTQWs) has been shown to expedite the quantum hitting times [Phys. Rev. Lett. 130, 050802 (2023)]. >>
Here, AA << study how restarting monitored discrete-time quantum walks (DTQWs) affects the quantum hitting times. (They) show that the restarted DTQWs outperform classical random walks in target searches, benefiting from quantum ballistic propagation, a feature shared with their continuous-time counterparts. >>
Kunal Shukla, Riddhi Chatterjee, C. M. Chandrashekar. Accelerated first detection in discrete-time quantum walks using sharp restarts. Phys. Rev. Research 7, 023069. Apr 21, 2025.
Also: walk, random, network, in https://www.inkgmr.net/kwrds.html
Keywords: gst, networks, randomness, walk, random walk, quantum walk, stochasticity, sharp restart.