AA << study the nonequilibrium stationary state of a one-dimensional inertial run-and-tumble particle trapped in a harmonic potential. (AA) find that the presence of inertia leads to two distinct dynamical scenarios, namely, overdamped and underdamped, characterized by the relative strength of the viscous and the trap timescales. >>
️
<< in the underdamped regime, both the position and velocity undergo transitions from a novel multipeaked structure in the strongly active limit to a single-peaked Gaussian-like distribution in the passive limit. On the other hand, in the overdamped scenario, the position distribution shows a transition from a U shape to a dome shape, as activity is decreased. Interestingly, the velocity distribution in the overdamped scenario shows two transitions—from a single-peaked shape with an algebraic divergence at the origin in the strongly active regime to a double-peaked one in the moderately active regime to a dome-shaped one in the passive regime. >>️
Debraj Dutta, Anupam Kundu, et al. Harmonically trapped inertial run-and-tumble particle in one dimension. Phys. Rev. E 110, 044107. Oct 4, 2024.
Also: particle, transition, in https://www.inkgmr.net/kwrds.html
Keywords: gst, particle, transition