Translate

Visualizzazione dei post in ordine di data per la query vortex. Ordina per pertinenza Mostra tutti i post
Visualizzazione dei post in ordine di data per la query vortex. Ordina per pertinenza Mostra tutti i post

martedì 15 aprile 2025

# gst: experimental investigation of turbulence modulation by deformable bubbles

<< In this work (AA) experimentally investigate the turbulence modulation in the wake of deforming bubbles in homogeneous and isotropic turbulence, in the regime where the turbulence fluctuation is stronger than or comparable to the bubble rising velocity. >>

<< In a quiescent or weak turbulence, the wake has a persistent direction due to the buoyancy. In turbulence, however, (Their) results suggest that the decorrelation time for the slip velocity roughly equals the bubble-sized eddy turn over time. It suggests that, when turbulence becomes intense enough, the slip velocity changes its direction and magnitude so frequently that a wake barely has time to develop. >>

<< As a result, both the intensity and length of the wake are significantly modified. Nevertheless, with sufficient bubble Reynolds number, the wake, albeit limited, can still modulate surrounding turbulence. >>

<< The results suggest that the local turbulence is augmented by the bubble wake, and the amount of augmentation depends heavily on the bubble Reynolds number, the orientation of the bubble semimajor axis relative to the slip velocity, and the bubble deformation. >>️

Xu Xu, Shiyong Tan, et al. Experimental investigation of turbulence modulation by deformable bubbles. Phys. Rev. Fluids 10, 033605. March 31, 2025.

Also: bubble, disorder & fluctuations, turbulence, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, deformable bubbles, bubble wake, bubble-bubble interaction, disorder & fluctuations, turbulence, turbulence modulation, surrounding turbulence, vortex, slip velocity, buoyancy

sabato 12 aprile 2025

# gst: chaotic and time-periodic edge states in square duct flow.


AA << analyse the dynamics within the stability boundary between laminar and turbulent square duct flow with the aid of an edge-tracking algorithm. As for the circular pipe, the edge state turns out to be a chaotic attractor within the edge if the flow is not constrained to a symmetric subspace. The chaotic edge state dynamics is characterised by a sequence of alternating quiescent phases and regularly occurring bursting episodes. These latter reflect the different stages of the well-known streak-vortex interaction in near-wall turbulence: the edge states feature most of the time a single streak with a number of flanking quasi-streamwise vortices attached to one of the four surrounding walls. The initially straight streak undergoes the classical linear instability and eventually breaks in an intense bursting event due to the action of the quasi-streamwise vortices. At the same time, the vortices give rise to a new generation of low-speed streaks at one of the neighbouring walls, thereby causing the turbulent activity to `switch' from one wall to the other. >>

<< When restricting the edge dynamics to a single or twofold mirror-symmetric subspace, on the other hand, the outlined bursting and wall-switching episodes become self-recurrent in time. These edge states thus represent the first periodic orbits found in the square duct. In contrast to the chaotic edge states in the non-symmetric case, the imposed symmetries enforce analogue bursting cycles to simultaneously appear at two parallel opposing walls in a mirror-symmetric configuration. Both localisation of the turbulent activity to one or two walls and wall switching are shown to be a common phenomenon in low Reynolds number duct turbulence. (They) therefore argue that the marginally turbulent trajectories transiently visit the identified edge states during these episodes, so that the edge states become actively involved in the turbulent dynamics. >>️

Markus Scherer, Markus Uhlmann, Genta Kawahara. Chaotic and time-periodic edge states in square duct flow. arXiv: 2503.22519v1 [physics.flu-dyn]. Mar 28, 2025️. 

Also: turbulence, chaos, vortex, instability, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence, duct turbulence, chaos, chaotic edge states, vortex, instability, wall-switching episodes, bursting cycles 

mercoledì 12 marzo 2025

# gst: tandem droplets accelerated by continuous uniform airflow.

<< In a dense droplet environment, droplets influence each other's motion, deformation, and breakup behavior. The tandem droplet is a particularly relevant case for the study of its unsteady dynamic behavior. >>

<< A three-dimensional numerical simulation study was conducted to investigate the deformation process of tandem droplets under different conditions. >>

<< The results of the research show that under conditions of high density ratio and a significant Reynolds number, the edge morphological characteristics of droplets are predominantly influenced by the Rayleigh-Taylor instability. In the case of low density ratios, the pressure drag force on the leeward side exerts a dominant influence on the accelerated motion of the leading droplet. The shape of the droplet is significantly influenced by the vortex ring present in the recirculation region. The perturbation of the liquid edge induces the vortex ring to split into secondary vortex rings, which act back on the droplet, thereby affecting its morphological characteristics. The trailing droplet is subject to a reduction in cross-flow radius, drag coefficient, minimum length, and expansion speed of the liquid bag due to the influence of the wake of the leading droplet. The decrease in Reynolds number and relative distance leads to a stronger suppression effect, while the decrease in density ratio shortens the length of the recirculation region, thereby weakening the suppression of trailing droplets. >>

Shuting Peng, Fuzhen Chen, et al. Three-dimensional numerical simulation of tandem droplets accelerated by continuous uniform airflow. Phys. Rev. Fluids 10, 024304. Feb 25, 2025. 

Also: droplet, instability, vortex, behav, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, droplet, instability, vortex, behavior

venerdì 7 marzo 2025

# gst: transition to inverse cascade in turbulent rotating convection in absence of the large-scale vortex.


<< Turbulent convection under strong rotation can develop an inverse cascade of kinetic energy from smaller to larger scales. In the absence of an effective dissipation mechanism at the large scales, this leads to the pile-up of kinetic energy at the largest available scale, yielding a system-wide large-scale vortex (LSV). Earlier works have shown that the transition into this state is abrupt and discontinuous. >>

Here, AA << study the transition to the inverse cascade in the case where the inverse energy flux is dissipated before it reaches the system scale, suppressing the LSV formation. (They) demonstrate how this can be achieved in direct numerical simulations by using an adapted form of hypoviscosity on the horizontal manifold. (They) find that in the absence of the LSV, the transition to the inverse cascade becomes continuous. This shows that it is the interaction between the LSV and the background turbulence that is responsible for the observed discontinuity. >>

AA << furthermore show that the inverse cascade in absence of the LSV has a more local signature compared to the case with LSV. >>️

Xander M. de Wit. Transition to inverse cascade in turbulent rotating convection in absence of the large-scale vortex. arXiv: 2502.16275v1 [physics.flu-dyn]. Feb 22, 2025. 

Also: turbulence, dissipation, transition, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence, dissipation, transitions, vortices


giovedì 6 marzo 2025

# gst: turbulence-induced fluctuating interfaces in heterogeneously-active suspensions.

AA << investigate the effects of heterogeneous (spatially varying) activity in a hydrodynamical model for dense bacterial suspensions, confining ourselves to experimentally realizable, simple, quenched, activity patterns. (They) show that the evolution of the bacterial velocity field under such activity patterning leads to the emergence of hydrodynamic interfaces separating spatially localized turbulence from jammed frictional surroundings. (They) characterise the intermittent and multiscale fluctuations of this interface and also investigate how heterogeneity influences mixing via the residence times of Lagrangian tracers. >>

This AA work << reveals how naturally occurring heterogeneities could decisively steer active flows into more complex configurations than those typically studied, opening up parallels to droplet dynamics, front propagation and turbulent mixing layers. >>️

Siddhartha Mukherjee, Kunal Kumar, Samriddhi Sankar Ray. Turbulence-Induced Fluctuating Interfaces in Heterogeneously-Active Suspensions. arXiv: 2502.16443v1 [cond-mat.soft]. Feb 23, 2025. 

Also: fluctuations, turbulence, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, fluctuations, vortices, turbulence, turbulent and quiescent flows


mercoledì 5 marzo 2025

# gst: amplification of turbulence through multiple planar shocks.


AA << study the amplification of isotropic, incompressible turbulence through multiple planar, collisional shocks, using analytical linear theory. There are two limiting cases (They) explore. The first assumes shocks occur rapidly in time such that the turbulence does not evolve between shocks. Whereas the second case allows enough time for turbulence to isotropize between each shock. For the latter case, through a quasi-equation-of-state, we show that the weak multi-shock limit is agnostic to the distinction between thermal and vortical turbulent pressures, like an isotropic volumetric compression. >>

<< When turbulence does not return to isotropy between shocks, the generated anisotropy -- itself a function of shock strength -- can feedback on amplification by further shocks, altering choices for maximal or minimal amplification. >>

<< In addition for this case, (AA) find that amplification is sensitive to the shock ordering. (They) map how choices of shock strength can impact these amplification differences due to ordering, finding, for example, shock pairs which lead to identical mean post-shock fields (density, temperature, pressure) but maximally distinct turbulent amplification. >>️

Michael F. Zhang, Seth Davidovits, Nathaniel J. Fisch. Amplification of turbulence through multiple planar shocks. arXiv: 2502.18708v1 [astro-ph.GA]. Feb 25, 2025. 

Also: waves, turbulence, vortex, crack, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, waves, turbulence, vortex, shocks 


lunedì 3 marzo 2025

# gst: apropos of transitions to turbulence, pulsatility delays the transition to sustained turbulence in quasi-2D shear flows

<< Two-dimensional disturbances require high Reynolds numbers to incite transition from a steady base flow, as transient growth is modest. With the addition of an oscillatory base flow component, (AA) work shows that the transient growth experienced by two-dimensional initial perturbations is often well above that provided by the steady component. >>

<< However, as has been shown for three-dimensional flows [B. Pier and P. J. Schmid, J. Fluid Mech. 926, A11 (2021)], the transient growth is almost entirely composed of modal intracyclic growth, rather than a transient mechanism which takes advantage of non-normality. This lack of transient growth, relative to the severe decay induced by the favorable pressure gradient during the acceleration phase of the oscillatory base flow, only ever delays the transition to sustained turbulence. >>

<< Thus, a nonoscillatory driving force remains the most efficient strategy for sustained turbulence in quasi-two-dimensional shear flows. The only benefit provided by pulsatility is that the amplitude of the initial condition required to trigger intermittent turbulence is orders of magnitude smaller. >>️

Christopher J. Camobreco, Alban Pothérat, Gregory J. Sheard. Pulsatility delays the transition to sustained turbulence in quasi-two-dimensional shear flows. Phys. Rev. Fluids 10, 023905. Feb 25, 2025.

Also: pause, transition, turbulence, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, pause, transition, turbulence, vortex


sabato 22 febbraio 2025

# gst: order and chaos in systems of coaxial vortex pairs

Fig. B.12: Ex. with 4 interact. vortex pairs

AA << have analyzed interactions between two and three coaxial vortex pairs, classifying their dynamics as either ordered or chaotic based on strengths, initial sizes, and initial horizontal separations.  >>️

They << found that periodic cases are scattered among chaotic ones across different initial configurations. Quasi-periodic leapfrogging typically occurs when the initial distances between the vortex pairs are small and cannot coexist with vortex-pair overtake. When the initial configuration splits into two interacting vortex pairs and a single propagating vortex pair, the two interacting pairs consistently exhibit periodic leapfrogging. For the smallest initial horizontal separations, the system predominantly exhibits chaotic or quasi-periodic motions rather than periodic leapfrogging with a single frequency. This behavior is due to the strong coupling between all three vortex pairs. When the pairs are in close proximity, more complex and chaotic dynamics emerge instead of periodic motion. >>

Their << findings indicate that quasi-periodic leapfrogging and chaotic interactions generally occur when the three vortex pairs have similar strengths and initial sizes. Conversely, discrepancies in these parameters cause the system to disintegrate into two subsystems: a single propagating vortex pair and two periodically leapfrogging pairs. >>️
Christiana Mavroyiakoumou, Wenzheng Shi. Order and Chaos in Systems of Coaxial Vortex Pairs. arXiv: 2502.07002v1 [physics.flu-dyn]. Feb 10, 2025. ️

Also: chaos, vortexorder, disorder, disorder & fluctuations, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chaos, vortex, order, disorder, disorder & fluctuations


mercoledì 19 febbraio 2025

# gst: alignment-induced self-organization of autonomously steering microswimmers: turbulence, clusters, vortices, and jets.


<< Microorganisms can sense their environment and adapt their movement accordingly, which gives rise to a multitude of collective phenomena, including active turbulence and bioconvection. In fluid environments, collective self-organization is governed by hydrodynamic interactions. >>

<< By large-scale mesoscale hydrodynamics simulations, (AA) study the collective motion of polar microswimmers, which align their propulsion direction by hydrodynamic steering with that of their neighbors. The simulations of the employed squirmer model reveal a distinct dependence on the type of microswimmer—puller or pusher—flow field. No global polar alignment emerges in both cases. Instead, the collective motion of pushers is characterized by active turbulence, with nearly homogeneous density and a Gaussian velocity distribution; strong self-steering enhances the local coherent movement of microswimmers and leads to local fluid-flow speeds much larger than the individual swim speed. >>

<< Pullers exhibit a strong tendency for clustering and display velocity and vorticity distributions with fat exponential tails; their dynamics is chaotic, with a temporal appearance of vortex rings and fluid jets. >>

AA << results show that the collective behavior of autonomously steering microswimmers displays a rich variety of dynamic self-organized structures. >>

Segun Goh, Elmar Westphal, et al. Alignment-induced self-organization of autonomously steering microswimmers: Turbulence, clusters, vortices, and jets. Phys. Rev. Research 7, 013142. Feb 7, 2025. 

Also: swim, microswimmer, particle, turbulencechaos, noise, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, swim, swimmer, microswimmers, particle, turbulence, chaos, noise


giovedì 13 febbraio 2025

# gst: necklacelike pattern of vortex bound states


<< A vortex is a topological defect in the superconducting condensate when a magnetic field is applied to a type-II superconductor, (..). Because of the confinement of the quasiparticles by a vortex, it exhibits a circular-shaped pattern of bound states with discrete energy levels, (..) >>

 Here, AA << report a completely new type of vortex pattern which is necklacelike in an iron-based superconductor (..). (AA) theoretical analysis shows that this necklacelike vortex pattern arises primarily from selective off-shell interference between vortex bound states of opposite angular momenta in the presence of rotational symmetry breaking due to disorders. >>

<< This fascinating effect can be observed in a system with a small Fermi energy and wave vector, conditions fortuitously met in (Their) samples. (AA) results not only disclose a novel vortex structure, but also unravel a completely new quantum phenomenon in the superconducting condensate. >>️

Zhiyong Hou, Kailun Chen, et al. Necklacelike Pattern of Vortex Bound States. Phys. Rev. X 15, 011027. Feb 7, 2025.   https://journals.aps.org/prx/abstract/10.1103/PhysRevX.15.011027   arXiv: 2407.08547v1 [cond-mat.supr-con]. Jul 11, 2024.    https://arxiv.org/abs/2407.08547

Also: vortex, disorder, disorder & fluctuations, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, vortex, vortex bound states, symmetry breaking, disorder, disorder & fluctuations, necklacelike patterns


mercoledì 29 gennaio 2025

# gst: wake interference effects on flapping dynamics of elastic inverted foil.

AA << study the self-induced flapping dynamics of an inverted elastic foil when placed in tandem with a stationary circular cylinder. The effect of wake interference on the inverted foil's coupled dynamics is examined at a fixed Reynolds number (Re) as a function of nondimensional bending rigidity (𝐾B) and the structure-to-fluid mass ratio (𝑚*). >>

AA << results show that there exists a critical 𝐾B (..), above which the downstream foil is synchronized with the unsteady wake, and the cylinder controls the flapping response and the wake vortex dynamics. During synchronization, two additional flapping modes, namely, the small- and moderate-amplitude flapping mode, are observed as a function of decreasing 𝐾B. Below 𝐾B,Cr, the downstream foil undergoes self-induced large-amplitude flapping (LAF) similar to that of an isolated foil counterpart. >>

<< When the dynamics of the downstream foil are analyzed for a range of 𝑚*, (AA) can characterize the response dynamics into two regions: low and high sensitivity. The high-sensitivity region is observed when the dynamics are controlled by the cylinder vortex shedding, i.e., for foils with high stiffness. In this regime, the foil dynamics is negatively correlated with 𝐾B and 𝑚*. >>

<< The low-sensitivity region is observed when the downstream foil is no longer synchronized with the wake and undergoes an LAF response, with dynamics that are weakly correlated with 𝐾B. A nondimensional parameter is proposed that combines the effect of the foil's inertia and elastic forces and can capture the foil's response when it is subjected to wake interference effects. >>

Aarshana R. Parekh, Rajeev K. Jaiman. Wake interference effects on flapping dynamics of elastic inverted foil. Phys. Rev. Fluids 10, 014702. Jan 16, 2025.

Also: vortex, elastic, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, self-induced flapping dynamics, vortex, elasticity, transitions


martedì 17 dicembre 2024

# gst: vortex-pair dance and oscillation

       Fig. 4

This AA study << focuses on fundamental dynamics of vortex-pair fields, specifically known as vortex-pair beams (VPBs) in optics. VPBs have gained increasing attention due to their unique properties, including vortex attraction and repulsion. Here, (AA)  explore the dynamics of pure-phase VPBs (PPVPBs) and observe intriguing helical and intertwined behaviors of vortices, resembling a vortex-pair dance. >>

They << uncover the oscillation property of the intervortex distance for PPVPBs in free space. The observed dancing and oscillation phenomena are intricately tied to the initial intervortex distance and can be explained well in the hydrodynamic picture. Notably, the vortex dancing and oscillation alter the process of vortex-pair annihilation, extending the survival range for opposite vortices. >>

<< This discovery enhances our understanding of vortex interactions and sheds light on the intricate dynamics of both vortex-vortex and vortex-antivortex interactions. >>

Dadong Liu, Lai Chen, Li-Gang Wang. Observation of vortex-pair dance and oscillation. arXiv: 2412.06634v1 [physics.optics]. Dec 9, 2024.

Also: vortex, dance, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, vortex, dance 


venerdì 8 novembre 2024

# gst: phase transitions in anisotropic turbulence.


<<  
Turbulence is a widely observed state of fluid flows, characterized by complex, nonlinear interactions between motions across a broad spectrum of length and time scales. While turbulence is ubiquitous, from teacups to planetary atmospheres, oceans and stars, its manifestations can vary considerably between different physical systems. For instance, three-dimensional (3D) turbulent flows display a forward energy cascade from large to small scales, while in two-dimensional (2D) turbulence, energy cascades from small to large scales. In a given physical system, a transition between such disparate regimes of turbulence can occur when a control parameter reaches a critical value. The behavior of flows close to such transition points, which separate qualitatively distinct phases of turbulence, has been found to be unexpectedly rich. Here, (AA) survey recent findings on such transitions in highly anisotropic turbulent fluid flows, including turbulence in thin layers and under the influence of rapid rotation. (They) also review recent work on transitions induced by turbulent fluctuations, such as random reversals and transitions between large-scale vortices and jets, among others. The relevance of these results and their ramifications for future investigations are discussed.
>>️

Adrian van Kan. Phase Transitions in Anisotropic Turbulence. arXiv: 2408.02844v1 [physics.flu-dyn]. Aug 5, 2024. 

Alsoturbulence, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence, vortex


domenica 13 ottobre 2024

# gst: pensive billiards


AA << define a new class of plane billiards - the `pensive billiard' - in which the billiard ball travels along the boundary for some distance depending on the incidence angle before reflecting, while preserving the billiard rule of equality of the angles of incidence and reflection. This generalizes so called `puck billiards' (..), as well as a `vortex billiard', i.e. the motion of a point vortex dipole in 2D hydrodynamics on domains with boundary. (AA) prove the variational origin and invariance of a symplectic structure for pensive billiards, as well as study their properties including conditions for a twist map, the existence of periodic orbits, etc. (AA) also demonstrate the appearance of both the golden and silver ratios in the corresponding hydrodynamical vortex setting. Finally, (AA) introduce and describe basic properties of pensive outer billiards. >>

Theodore D. Drivas, Daniil Glukhovskiy, Boris Khesin. Pensive billiards, point vortices, and pucks. arXiv: 2408.03279v1 [math.DS]. Aug 6, 2024.


FonT: 'pensive billiard' evokes images in me that could inspire a series of quasi-stochastic short poems ( https://inkpi.blogspot.com ), but (for now) I will abstain.

Keywords: gst, billiards, pensive billiard, puck billiard, vortex billiard


giovedì 19 settembre 2024

# gst: vortex structures under dimples and scars in turbulent free-surface flows


<< Turbulence beneath a free surface leaves characteristic long-lived signatures on the surface, such as upwelling 'boils', near-circular 'dimples' and elongated 'scars', easily identifiable by eye, e.g., in riverine flows. >>️

AA << explore the connection between these surface signatures and the underlying vortical structures. We investigate dimples, known to be imprints of surface-attached vortices, and scars, which have yet to be extensively studied, by analysing the conditional probabilities that a point beneath a signature is within a vortex core as well as the inclination angles of sub-signature vorticity. >>️

<< The analysis shows that the likelihood of vortex presence beneath a dimple decreases from the surface down through the viscous and blockage layers in a near-Gaussian manner, influenced by the dimple's size and the bulk turbulence. When expressed as a function of depth over the Taylor microscale λT, this probability is independent of Reynolds and Weber number. >>️

<< Conversely, the probability of finding a vortex beneath a scar increases sharply from the surface to a peak at the edge of the viscous layer, at a depth of approximately λT/4. Distributions of vortical orientation also show a clear pattern: a strong preference for vertical alignment below dimples and an equally strong preference for horizontal alignment below scars. >>️

AA << findings suggest that scars can be defined as imprints of horizontal vortices approximately a quarter of the Taylor microscale beneath the surface, analogous to how dimples can be defined as imprints of surface-attached vertical vortex tubes. >>

Jørgen R. Aarnes, Omer Babiker, et al. Vortex structures under dimples and scars in turbulent free-surface flows. arXiv: 2409.05409v1 [physics.flu-dyn]. 
9 Sep 2024.

Also: vortex, turbulence, waves, bubble, drop, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, vortex, turbulence, waves, bubble, drop, transition


giovedì 4 aprile 2024

# gst: creating topological vortex rings (on demand)


<< Vortex rings are ubiquitous topological structures in nature. In solid magnetic systems, their formation leads to intriguing physical phenomena and potential device applications. >>

 Here, AA << theoretically show that topological vortex rings can be created by a current pulse in a chiral magnetic nanocylinder with a trench structure. The creation process involves the formation of a vortex ring street, i.e., a chain of magnetic vortex rings with an alternative linking manner. The created vortex rings can be bounded with monopole-antimonopole pairs and possess a rich and controllable linking topology (..) which is determined by the duration and amplitude of the current pulse. >>

Yizhou Liu, Naoto Nagaosa. Current-Induced Creation of Topological Vortex Rings in a Magnetic Nanocylinder. Phys. Rev. Lett. 132, 126701. Mar 19, 2024. 

Ryan Wilkinson. Magnetic Vortex Rings on Demand. Physics 17, s29. Mar 19,  2024. 


Keywords: vortex, vortices, vortexes, vorticity, spin dynamics, spin texture, chiral magnets


lunedì 11 marzo 2024

# gst: self-trapped nonlinear waves with multiple phase singularities.

AA << investigate the existence of self-trapped nonlinear waves with multiple phase singularities. >>️

They << focus on configurations with an antivortex surrounded by a triangular arrangement of vortices within a hosting soliton. (AA) find stationary patterns that can be interpreted as stable self-trapped vortex crystals, constituting the first example of a configuration of this sort with space-independent potentials. Their stability is linked to their norm, transitioning from unstable to stable as their size increases, with an intermediate region where the structure is marginally unstable, undergoing a remarkable and puzzling self-reconstruction during its evolution. >>️

Angel Paredes and Humberto Michinel. Self-trapping of vortex crystals via competing nonlinearities.  Phys. Rev. E 109, 024216. Feb 22, 2024. 

Also: waves, soliton, vortex, in https://www.inkgmr.net/kwrds.html

Keywords: gst, waves, soliton, self-trapping, vortex 



lunedì 27 novembre 2023

# gst: when a turbulence can be confined

<< Turbulence is hard to control. Its ephemeral nature prevents us from treating it as an ordinary state of matter. Here (AA) create a stationary and isolated blob of turbulence using only elemental building blocks: vortex rings.  The turbulence is confined in a spherical region, surrounded by a quiescent environment, initiated and sustained by vortex rings. Crucially, vortex rings can be endowed with conserved quantities such as energy and helicity, which can be transferred to the turbulent state. Using 2D particle image velocimetry and 3D particle tracking velocimetry, (AA) demonstrate how confinement of turbulence occurs when vortex rings repeatedly collide, in contrast to coherent vortex reconnections. The pathlines depict the difference between these states of flow. >>️

Takumi Matsuzawa, Noah P. Mitchell, Stéphane Perrard, William T. M. Irvine. Turbulence through sustained vortex ring collisions. Phys. Rev. Fluids 8, 110507. Nov 16, 2023.

75TH ANNUAL MEETING OF THE APS DIVISION OF FLUID DYNAMICS (NOVEMBER 20, 2022 — NOV 22, 2022). V0008: Turbulence through sustained vortex ring collisions. 

Also: turbulence, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence, vortex, vortex ring collisions



giovedì 23 novembre 2023

# gst: kirigami exposed to external flows.


<< Kirigami patterned materials have found several applications in recent years due to their ability to assume complicated shapes and exhibit emergent physical properties when exposed to external forces. >>️

<< Consisting of an array of cuts in a thin material, fabrication of these patterns can be quite simple. Here (AA) show that when they are placed in fluid flow, kirigami cut sheets with various patterns produce a verity of flow patterns in the wake. Through several sets of experiments, (AA) show that the kirigami sheets placed in flow can undergo static or dynamic flow-induced instabilities as a result of which they can buckle or undergo limit cycle oscillations, or they can remain stable while undergoing very large elongations. >>️

<< The ability to create controlled small-scale vortex shedding, induce desired flow-induced instabilities on structures, and form specifically-angled jets will enable several future applications in flow mixing (e.g., by producing small vortices in uniform flow at low Reynolds numbers), flow control (e.g., by controlling the direction and the number of jets that are produced downstream), and underwater soft robotics (e.g., by imposing desired flow-induced oscillations on structures). >>
Adrian G. Carleton, Yahya Modarres-Sadeghi. Kirigami Sheets in Fluid Flow.  arXiv: 2311.09381v1 [physics.flu-dyn]. Nov 15, 2023. 

Also: kirigami, origami, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, kirigami, origami, fluid flows, vortex


giovedì 28 settembre 2023

# gst: reconfiguration and oscillations of sheets subject to vortex

<< The dynamics of a thin low-density polyethylene sheet subject to periodic forcing due to Bénard-Kàrmàn vortices in a long narrow water channel is investigated here. In particular, the time-averaged sheet deflection and its oscillation amplitude are considered. >>

<< The former is first illustrated to be well-approximated by the static equilibrium between the buoyancy force, the elastic restoring force, and the profile drag based on the depth-averaged water speed. >>

AA << observations also indicate that the presence of upstream vortices hinder the overall reconfiguration effect, well-known in an otherwise steady flow. For the sheet-tip oscillations, a simple model based on a torsional-spring-mounted flat plate correctly captures the measured tip amplitude δb over a wide range of sheet physical properties and flow conditions. >>

<< Furthermore, a rich phenomenology of structural dynamics including vortex-forced-vibration, lock-in with the sheet natural frequency, and flow-induced vibration due to the sheet wake, multiple-frequency, and modal response is reported. >>
J. John Soundar Jerome, Yohann Bachelier, et al. Reconfiguration and oscillations of a vertical, cantilevered sheet subject to vortex shedding behind a cylinder. Phys. Rev. Fluids 8, 093801. Sep 15, 2023. 


Keywords: gst, sheet, vortex, Benard-Karman vortices