Translate

Visualizzazione dei post in ordine di data per la query droplets. Ordina per pertinenza Mostra tutti i post
Visualizzazione dei post in ordine di data per la query droplets. Ordina per pertinenza Mostra tutti i post

giovedì 5 giugno 2025

# gst: spreading and retraction dynamics of drop impact onto elastic surfaces.

In this study, AA << numerically investigate the impact of droplets on elastic plates using a two-phase lattice Boltzmann method, with a particular focus on how vertical surface movements influence the spreading and retraction dynamics of the droplet. >>

<< The results show that, during the spreading phase, the spreading diameter is smaller on elastic surfaces compared to rigid ones due to the vertical velocity of the surface. A universal linear evolution of the drop spreading is derived for the early stage across both rigid and elastic substrates, accounting for the surface motion by rescaling time, and this relationship is in good agreement with the numerical results. >>

<< In the retraction phase, unlike the nearly constant retraction speed observed on rigid surfaces, the retraction speed 𝑉ret oscillates with the vibrations of the elastic surface, with the oscillation period remaining relatively consistent. Further analysis reveals that the variation in 𝑉ret is not influenced by the surface's velocity but rather by its acceleration, as additional inertia is introduced during surface acceleration. >>

<< Based on this understanding, a predictive model for 𝑉ret during droplet impacts on moving surfaces is proposed, which demonstrates strong agreement with the numerical findings. >>

Yufei Ma, Haibo Huang. Spreading and retraction dynamics of drop impact onto elastic surfaces. Phys. Rev. Fluids 10, 053607. May 15, 2025.

Also: drop, droplet, droploid, elastic, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drops, droplets, droploids, elasticity, elastic surfaces, surface acceleration, vertical surface movements, spreading phase, retraction phase.

lunedì 5 maggio 2025

# gst: transitions of breakup regimes for viscous droplets in airflow.

In this AA study, << the transitions of breakup regimes for viscous droplets are investigated experimentally using high-speed imaging taken from a side view and a 45 view. Based on the morphology change in the middle of the droplet, the breakup regimes are classified into no-breakup, bag breakup, bag-stamen, low-order multimode, high-order multimode, and shear-stripping breakup. The droplet morphologies in different regimes and the corresponding transitions are discussed in detail. >>

<< The droplet viscosity dissipates the kinetic energy transferred by the airflow during the initial droplet flattening, and affects the development of the Rayleigh-Taylor instability wave after the flattening. Through the analysis of the droplet deformation and the Rayleigh-Taylor instability with the droplet viscosity taken into account, the transition conditions of different regimes are obtained in a regime map. By further considering the relative velocity loss between the droplet and the airflow, the ranges of the dual-bag breakup in the low-order multimode regime and the droplet retraction in the bag-stamen regime are determined. >>

Zhikun Xu, Tianyou Wang, Zhizhao Che. Transitions of breakup regimes for viscous droplets in airflow. arXiv: 2504.14149v1 [physics.flu-dyn]. Apr 19, 2025.

Also: drop, droplet, droploid, transition, instability, waves, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drops, droplets, droploids, viscous droplets, droplet breakup, transitions, instability, waves

venerdì 11 aprile 2025

# gst: apropos of odd droplets; fluids with broken symmetries could self-control their mechanics.

<< Flows with deformable interfaces are commonly controlled by applying an external field or modifying the boundaries that interact with the fluid, (..) Here, (AA) demonstrate that fluids with broken symmetries can self-control their mechanics. (They) demonstrate that odd viscosity dramatically disrupts conventional symmetric spreading by inducing asymmetric deformations and chiral flow patterns. (Their) analysis reveals a variety of dynamic regimes, including leftward and rightward bouncing, as well as rolling, depending on the relative strength of the odd viscosity. >>️

Hugo França, Maziyar Jalaal. Odd Droplets: Fluids with Odd Viscosity and Highly Deformable Interfaces. arXiv: 2503.21649v1 [cond-mat.soft]. Mar 27, 2025.

Also: drop, droplet, droploid, chiral, bouncing, rolling, slipping, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, chirality, bouncing, rolling, slipping, oddity, odd viscosity, self-control

martedì 25 marzo 2025

# gst: droplet bag formation in turbulent airflows.


AA << present numerical simulations investigating the evolution of liquid droplets into baglike structures in turbulent airflows. The droplet bag breakup problem is of significance for many multiphase processes in scientific and engineering applications. Turbulent fluctuations are introduced synthetically into a mean flow, and the droplet is inserted when the air-phase turbulence reaches a statistically stationary state. The morphological evolution of the droplet under different turbulence configurations is retrieved and analyzed in comparison with laminar aerobreakup results. While the detailed evolution history of individual droplets varies widely between different realizations of the turbulent flow, common dynamic and morphological evolution patterns are observed. >>

<< The presence of turbulence is found to enhance the drag coefficient of the droplet as it flattens. At late times, the droplet becomes tilted and increasingly corrugated under strong turbulence intensity. (AA) quantify these phenomena and discuss their possible governing mechanisms associated with turbulence intermittency. >>

<< Lastly, the influences of liquid-gas viscosity ratio are examined and the implications of air-phase turbulence on the later bag film breakup process are discussed. >>️

Kaitao Tang, Thomas A. A. Adcock, Wouter Mostert. Droplet bag formation in turbulent airflows. Phys. Rev. Fluids 10, 033604. March 19, 2025.

Also: drop, droplet, droploid, turbulence, fluctuations, intermittency, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, turbulence, fluctuations, intermittency

mercoledì 12 marzo 2025

# gst: tandem droplets accelerated by continuous uniform airflow.

<< In a dense droplet environment, droplets influence each other's motion, deformation, and breakup behavior. The tandem droplet is a particularly relevant case for the study of its unsteady dynamic behavior. >>

<< A three-dimensional numerical simulation study was conducted to investigate the deformation process of tandem droplets under different conditions. >>

<< The results of the research show that under conditions of high density ratio and a significant Reynolds number, the edge morphological characteristics of droplets are predominantly influenced by the Rayleigh-Taylor instability. In the case of low density ratios, the pressure drag force on the leeward side exerts a dominant influence on the accelerated motion of the leading droplet. The shape of the droplet is significantly influenced by the vortex ring present in the recirculation region. The perturbation of the liquid edge induces the vortex ring to split into secondary vortex rings, which act back on the droplet, thereby affecting its morphological characteristics. The trailing droplet is subject to a reduction in cross-flow radius, drag coefficient, minimum length, and expansion speed of the liquid bag due to the influence of the wake of the leading droplet. The decrease in Reynolds number and relative distance leads to a stronger suppression effect, while the decrease in density ratio shortens the length of the recirculation region, thereby weakening the suppression of trailing droplets. >>

Shuting Peng, Fuzhen Chen, et al. Three-dimensional numerical simulation of tandem droplets accelerated by continuous uniform airflow. Phys. Rev. Fluids 10, 024304. Feb 25, 2025. 

Also: droplet, instability, vortex, behav, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, droplet, instability, vortex, behavior

sabato 8 marzo 2025

# gst: 'jazzy' intermittency, its onset and multiscaling in active turbulence.

<< Recent results suggest that highly active, chaotic, nonequilibrium states of living fluids might share much in common with high Reynolds number, inertial turbulence. (AA) now show, by using a hydrodynamical model, the onset of intermittency and the consequent multiscaling of Eulerian and Lagrangian structure functions as a function of the bacterial activity. (Their) results bridge the worlds of low and high Reynolds number flows as well as open up intriguing possibilities of what makes flows intermittent. >>️

AA << believe that (Their) work significantly understands the dynamics of dense bacterial suspensions in ways which isolates the truly turbulent effects from those stemming from simpler chaotic motion. More intriguingly, and at a broader conceptual framework, this study yet again underlines that intermittency can be an emergent phenomena in flows where the nonlinearity does not, trivially, dominate the viscous damping. Indeed, there is increasing evidence of intermittency emerging in systems which are not turbulent in the classical sense. Examples include flows with modest Reynolds number of∼O(10e2) showing intermittent behaviour characteristic of high Reynolds turbulence, self-propelling active droplets with intermittent fluctuations, active matter systems of self-propelled particles, which undergo a glass transition, with an intermittent phase before dynamical arrest, and perhaps most pertinently, in elastic turbulence. Thus, (AA) believe, (Their) work will contribute further to understanding what causes flows to turn intermittent. Answers to such questions will also help in understanding fundamental questions in high Reynolds number turbulence. >>️

Kolluru Venkata Kiran, Kunal Kumar, et al. Onset of Intermittency and Multiscaling in Active Turbulence. Phys. Rev. Lett. 134, 088302. Feb 28, 2025. 

Also: intermittency, transition, fluctuations, drop, droplet, droploid, elastic, turbulence, chaos, jazz, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, intermittency, transitions, fluctuations, drops, droplets, droploids, elasticity, turbulence, chaos, jazz


sabato 4 gennaio 2025

# gst: floating droplets excited with Faraday waves

<< The Faraday instability has been extensively studied in bounded containers but only recently has research on this phenomenon in flexible domains been conducted. (AA) study floating liquid droplets with Faraday waves excited on their surface, which undergo a slow time evolution toward a stable noncircular shape. (AA) develop a theoretical model for the evolution of the boundary of the droplet, thus allowing to simulate its full transient motion toward steady state. >>

<< By changing the forcing frequency and amplitude of (the) system, (They) observe a variety of stable droplet shapes. (..) Interesting transient behavior such as hysteresis is also discussed, where the final droplet shape depends on its previous shape. Finally, (They) touch upon droplets that do not reach a steady state shape, instead oscillating periodically in time or rotating at a constant angular velocity. >>️

L. Mazereeuw. Theoretical and experimental investigation of the shapes formed by floating droplets excited with Faraday waves. Phys. Rev. Fluids 9, 124404. Dec 19, 2024.

Also: drop, waves, instability, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: drops, droplets, droploids, waves, instability, Faraday instability, transitions   


venerdì 6 dicembre 2024

# gst: anomalous oscillation modes of (superfluid) pendant droplets; horizontal translation on a flat surface, bouncing off at the corner and vertical oscillations at the edge.

<< Droplets should exhibit various dynamical phenomena when adhered to a surface; not all of them are realized in classical fluids. Visualization of superfluid  4^He (helium-4) pendant droplets revealed that the droplets were horizontally translated on a flat surface, bouncing off at the corner, known as the Noether mode that reflects the translation symmetry. >>️

<< The droplets exhibited another mode in vertical oscillations with high amplitude that included oscillation of the droplet edge. The oscillation period remained constant even as the droplets grew, exhibiting an anomalously weak size dependence. The high mobility of the droplet edges owing to the superfluidity was a crucial factor for the appearance of these anomalous modes. >>️

Keita Onodera, Ryuma Nagatomo, et al. Anomalous Oscillation Modes of Superfluid Pendant Droplets. Phys. Rev. Lett. 133, 216001. Nov 19, 2024.

Also: drop, droplet, droploid, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, transition


lunedì 25 novembre 2024

# gst: apropos of dances, drops that dance following snake- and ouroboros-shaped trajectories on lubricated surfaces.


<< Recently, (AA) observed a curious breath figure pattern when water condenses on solid surfaces coated with a thin lubricant oil film. Water drops of various sizes, ranging from tens of microns to several millimetres, start to perform a self-avoiding, serpentinelike dance. As the drop moves, it consumes smaller droplets along its path, converting interfacial energy into kinetic energy to sustain its motion. These self-avoiding drops preferentially avoid crossing their own paths as well as the paths of other drops; they can only intersect their previous paths once sufficient recondensation has occurred. This self-avoiding behavior arises because the previous path (..) contains little to no water content to fuel self-propulsion, so the drops continually seek areas with higher local water content. >>️

<< This intricate serpentine dance is driven by short-range interactions between droplets, mediated by overlapping menisci, similar to the Cheerios effect. Remarkably, long-range order spontaneously emerges from these short-range interactions, with the collective motion exhibiting self-similarity—breath figure patterns appear roughly similar across different scales. >>

<< The serpentine motions of the drops, which can span distances many times their diameters, eventually deplete the local lubricant film, causing a transition from serpentine to circular motion. This circular motion can be seen as a unique form of serpentine motion occurring in lubricant-poor regions. As the drops move, they continually redistribute the lubricant across the substrate, leading to a dynamic interplay between serpentine and circular motions. This ongoing redistribution can be visualized by illuminating the surface with diffused white light and capturing the resulting interference patterns with a digital camera. Variations in lubricant thickness produce different hues, creating a vibrant, colorful canvas and an intricate dance floor for the condensing drops. >>️

<< The phenomenon described in (AA) paper represents a fascinating example of active matter driven by condensation, rather than the more commonly observed chemical reactions or Marangoni effects. >>

Marcus Lin, Fauzia Wardani, Dan Daniel. Dancing drops on lubricated surfaces. Phys. Rev. Fluids 9, 110504. Nov 22, 2024.

Marcus Lin, Solomon Adera, Joanna Aizenberg, Yao Xi, Dan Daniel. V0030: Serpents and Ouroboros: Emergent collective motion of condensate droplets. 76th Annual Meeting of the APS Division of Fluid Dynamics. Nov 19-21, 2023.

Also: drop, droplet, droploid, dance, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, dance


mercoledì 28 agosto 2024

# gst: dynamics of small droplets in turbulent multiphase flows


AA << show unambiguously that the formation of small droplets is governed by the internal dynamics which occurs during the breakup of large drops and that the high vorticity and the extreme dissipation associated to these events are the consequence and not the cause of the breakup. >>️

M. Crialesi-Esposito, G. Boffetta, L. Brandt, et al. How small droplets form in turbulent multiphase flows. Phys. Rev. Fluids 9, L072301. Jul 29, 2024. 

Also: drop, bubble, transition, turbulence, intermittency, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid,  bubble, transition, turbulence, intermittency


giovedì 22 agosto 2024

# gst: spontaneous bouncing, trampolining, and hovering behaviors of a levitating water droplet without constraints.


<< The levitating Leidenfrost (LF) state of a droplet on a heated substrate is often accompanied by fascinating behaviors such as star-shaped deformations, self-propulsion, bouncing, and trampolining. These behaviors arise due to the vapor flow instabilities at the liquid-vapor interface beneath the droplet at sizes typically comparable to the capillary length scale of the liquid. >>

AA << report on the spontaneous bouncing, trampolining, and hovering behavior of an unconstrained LF water droplet. (..) the water droplet exhibits an increase in bouncing height at specific radii with intermittent reduction in the height of bounce leading to a quiescent LF state. The reemergence of the trampolining behavior from the quiescent hovering state without any external forcing is observed at sizes as low as 0.1 times the capillary length. (AA) attribute the droplet bouncing behavior to the dynamics of vapor flow beneath the LF droplet. >>

AA << propose that the trampolining behavior of the droplet at specific radii is triggered by harmonic and subharmonic resonance between the natural frequency of the vapor layer and Rayleigh frequency of the droplet. This proposed mechanism of resonance-driven trampolining of LF droplets is observed to be applicable for different liquids irrespective of the initial volume and substrate temperatures, thus indicating a universality of the behavior. (AA) attribute the intermittent trampolining events to the change in the natural frequency of the droplet and the vapor layer due to evaporative mass loss. >>

Pranjal Agrawal, Susmita Dash. Reemergence of Trampolining in a Leidenfrost Droplet. arXiv: 2408.02335v1 [physics.flu-dyn]. Aug 5, 2024. 


Keywords: gst, drop, droplet, droploid, behav, behaviour


lunedì 17 giugno 2024

# gst: breakup of Janus droplet in a bifurcating microchannel

<< Droplet breakup is frequently observed in natural and industrial processes (..)  Although valuable insights on the breakup mechanisms of single-phase droplets in microchannels have been provided over the past decades, the breakup physics of complex emulsions is still poorly understood. >>️

<< Spatially asymmetric Janus microdroplets, distinct from single-phase or double emulsion droplets possessing one uniform interface with the ambient phase, are anticipated to show unique breakup behaviors, which has not been explored.  >>️

AA << conduct both microfluidic experiments and three-dimensional lattice Boltzmann simulations to investigate the dynamic breakup of ionic liquid (IL)-water Janus droplets in an assembled 3D-printed microchannel with a bifurcation. >>️

<< Three different flow regimes are identified: (i) division into two daughter Janus droplets, (ii) breakup into a single-phase droplet and a smaller Janus droplet, and (iii) nonbreakup.  >>️

AA << find that the strong constraint effect of the main channel and large Ca_av (average capillary numbers) values are essential to the symmetrical breakup of Janus droplets. The tunnel between the mother droplet and the wall of the main channel, which allows the lateral shift of the Janus droplet, and moderate flow rates facilitate the breakup of the IL single-phase portion of Janus droplets.  >>

<< Through 90° rotation of the splitting microchannel, (AA) elucidate the distinctions in Janus droplet behaviors under two baffle orientations. Potential impacts of the oblique flow characteristic of [bmim]⁢Fe⁢Cl4-water Janus droplets on the droplet breakup are discussed. >>️
Hao Wang, Shiteng Wang, et al. Dynamic breakup of Janus droplet in a bifurcating microchannel. Phys. Rev. Fluids 9, 064203. Jun 11, 2024. 


Also: 'drop', 'droplet', 'droploid', in https://www.inkgmr.net/kwrds.html 

Keywords: gst, Janus, drop, droplet, droploid



venerdì 22 marzo 2024

# gst: rearrangements of a jammed 2-D emulsion (during slow compression).

<< As amorphous materials get jammed, both geometric and dynamic heterogeneity are observed. (AA)  investigate the correlation between the local geometric heterogeneity and local rearrangements in a slowly compressed bidisperse quasi-two-dimensional emulsion system. The compression is driven by evaporation of the continuous phase. >>

<< droplets in heterogeneous local regions are more likely to have local rearrangements. These rearrangements are generally T1 events where two droplets converge toward a void, and two droplets move away from the void to make room for the converging droplets. Thus, the presence of the voids tends to orient the T1 events. >>️

<< The presence of a correlation between the structural quantities and the rearrangement dynamics remains qualitatively unchanged over the entire range of packing fractions observed. >>️

Xin Du, Eric R. Weeks. Rearrangements during slow compression of a jammed  two-dimensional emulsion. Phys. Rev. E 109, 034605. Mar 20,  2024.


Keywords: drops, droplets, droploids 


venerdì 15 marzo 2024

# gst: multi-component droplets may exhibit self-lubricating effects

<< Over the past decade, there has been a growing interest in the study of multicomponent drops. These drops exhibit unique phenomena, as the interplay between hydrodynamics and the evolving physicochemical properties of the mixture gives rise to distinct and often unregulated behaviors. >>

<< Of particular interest is the complex dynamic behavior of the drop contact line, which can display self-lubrication effect. The presence of a slipping contact line in self-lubricating multicomponent drops can suppress the coffee-stain effect, conferring valuable technological applications. >>

Huanshu Tan, Detlef Lohse, Xuehua Zhang. Self-Lubricating Drops. arXiv: 2403.01207v1 [physics.flu-dyn]. Mar 2, 2024

Also: drop droplet droploid, in https://www.inkgmr.net/kwrds.html

Keywords: drop, droplet, droploid, multicomponent drops, drop contact line, self-lubrication



mercoledì 21 febbraio 2024

# gst: when volatile droplets dance across a surface erratically (along random trajectories)

<< When a drop of a volatile liquid is deposited on a uniformly heated wettable, thermally conducting substrate, one expects to see it spread into a thin film and evaporate. >>️

<< Contrary to this intuition, due to thermal Marangoni contraction, the deposited drop contracts into a spherical-cap-shaped puddle, with a finite apparent contact angle. Strikingly, this contracted droplet, above a threshold temperature, well below the boiling point of the liquid, starts to spontaneously move on the substrate in an apparently erratic way. >>️

Pallav Kant, Mathieu Souzy, et al. Autothermotaxis of volatile drops. Phys. Rev. Fluids 9, L012001. Jan 31, 2024. 

Rachel Berkowitz. Hot Surfaces Make Droplets Move Erratically. Physics 17, s14. Jan 31, 2024. 

Also: drop, bubble, erratic

Keywords: gst, drop, bubble, erratic, thermotaxis, autothermotaxis


giovedì 15 febbraio 2024

# gst: droplets scoot like caterpillars.

<< From swells in an ocean to ripples in a puddle, the shearing effect of wind blowing over a liquid is visible at all scales. This shear determines the interactions between Earth’s atmosphere and its surface water and, researchers now explain, the movement of liquid droplets that crawl up and down the window of a moving car in the rain. In a series of experiments, (AA) show that airflow triggers surface waves that cause such droplets to crawl like caterpillars before they break apart. >>️

<< At first, the airflow across the droplet’s surface caused the droplet to extend into an oval shape. The droplet also began to tilt, with the liquid piling up at the droplet’s downwind edge. When the drag force exerted by the airflow overcame the capillary force between the glycerin and the glass, the droplet began to slide and to stretch out even more. Surface waves then developed on the elongated droplet and traveled toward its leading edge. The waves induced a stable caterpillar-like motion, with the droplet stretching and contracting along its length. Eventually, beyond a threshold length that depended on the droplet’s volume, the caterpillar was no longer able to withstand the shearing force and broke into several droplets. >>️

AA << say that the behavior follows the same pattern as that of an elongated droplet sliding along an incline. >>
Rachel Berkowitz. Droplets Scoot Like Caterpillars. Physics 16, s110. Sep 1, 2023.

A. Chahine, J. Sebilleau, R. Mathis, D. Legendre. Caterpillar like motion of droplet in a shear flow. Phys. Rev. Fluids 8, 093601. Sep 1, 2023.

Also: drop, bubble, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, bubble, transition


venerdì 26 gennaio 2024

# gst: compression and fracture of ordered and disordered droplet rafts

AA << simulate a two-dimensional array of droplets being compressed between two walls. The droplets are adhesive due to an attractive depletion force. As one wall moves toward the other, the droplet array is compressed and eventually induced to rearrange. The rearrangement occurs via a fracture, where depletion bonds are quickly broken between a subset of droplets. >>

<< For monodisperse, hexagonally ordered droplet arrays, this fracture is preceded by a maximum force exerted on the walls, which drops rapidly after the fracture occurs. >>

<< In small droplet arrays a fracture is a single well-defined event, but for larger droplet arrays, competing fractures can be observed. These are fractures nucleated nearly simultaneously in different locations. >>

AA << also study the compression of bidisperse droplet arrays. The addition of a second droplet size further disrupts fracture events, showing differences between ideal crystalline arrays, crystalline arrays with a small number of defects, and fully amorphous arrays. >>
Pablo Eduardo Illing, Jean-Christophe Ono-dit-Biot, et al. Compression and fracture of ordered and disordered droplet rafts. Phys. Rev. E 109, 014610. Jan 17, 2024.

Also: drop, defect, fracture, crack, in https://www.inkgmr.net/kwrds.html

randa (quasi-stochastic poetry) https://inkpi.blogspot.com/search?q=randa

Keywords: gst, drop, droplet, raft, defect, fracture, crack



venerdì 4 agosto 2023

# gst: dynamics and interactions of multiple bright droplets and bubbles, and interactions of kinks with droplets and with antikinks.

<< Droplets bearing different chemical potentials experience mass-exchange phenomena. Individual bubbles exhibit core expansion and mutual attraction prior to their destabilization. Droplets interacting with kinks are absorbed by them, a process accompanied by the emission of dispersive shock waves and gray solitons. Kink-antikink interactions are repulsive, generating counter-propagating shock waves. >> 
 
G. C. Katsimiga, S. I. Mistakidis, et al. Interactions and dynamics of one-dimensional droplets, bubbles and kinks. arXiv: 2306.07055v2 [cond-mat.quant-gas]. Jul 26, 2023.

Also: drop, bubble, waves, soliton, in https://www.inkgmr.net/kwrds.html

Keywords: gst, drop, bubble, kink, wave, soliton, homoclinic orbits



lunedì 10 luglio 2023

# gst: myriad of complex dynamics from the atomization of acoustically levitated droplets

AA << report the dynamics of a droplet levitated in a single-axis acoustic levitator. The deformation and atomization behavior of the droplet in the acoustic field exhibits a myriad of complex phenomena, in sequences of steps. These include the primary breakup of the droplet through stable levitation, deformation, sheet formation, and equatorial atomization, followed by secondary breakup which could be umbrella breakup, bag breakup, bubble breakup or multistage breakup depending on the initial size of the droplet. >>

<< Both the primary and the secondary breakup of the droplet admit interfacial instabilities such as Faraday instability, Kelvin Helmholtz (KH) instability, RT instability, and RP instability and are well described with visual evidence. >>️

Sunil K. Saroj, Rochish M. Thaokar. Atomisation of an acoustically levitated droplet: Experimental observations of a myriad of complex phenomenon. arXiv: 2307.00400v1 [physics.flu-dyn]. Jul 1, 2023.

Also:  drop, transition, instability in https://www.inkgmr.net/kwrds.html

Keywords: gst, drop, droplet, transition, instability



sabato 22 aprile 2023

# gst: when droplets are capable of self-propulsion as if they were surfing on a self-generated wave.


<< active droplets can move autonomously or oscillate between confining walls (..). Those behaviors could provide a clue about how life emerged from inanimate material. >>️

<< in the past decades, it has become clear that weak physical interactions among biomolecules are a crucial part of the answer. Such interactions allow some molecules to stay together transiently while avoiding others, which can lead to the spontaneous formation of droplets whose composition differs from their surroundings. Although biochemist Alexander Oparin suggested such ideas a century ago (..), experimental corroboration arrived only recently >>️

<< The key contribution of Demarchi and his collaborators is to demonstrate that droplet drift can enhance the heterogeneity of substrate and product. The resulting positive feedback allows droplets to move continuously as if they were surfing on a self-generated wave. >>️

David Zwicker. Droplets Come to Life. Physics 16, 45. Mar 20, 2023. 

AA << find that condensates move toward the center of a confining domain when this feedback is weak. Above a feedback threshold, they exhibit self-propulsion, leading to oscillatory dynamics. Moreover, catalysis-driven enzyme fluxes can lead to interrupted coarsening, resulting in equidistant condensate positioning, and to condensate division. >>
Leonardo Demarchi, Andriy Goychuk, et al. Enzyme-Enriched Condensates Show Self-Propulsion, Positioning, and Coexistence. Phys. Rev. Lett. 130, 128401. Mar 20, 2023.

Also

'drop', 'droplet', 'droploid', 'transition' in 

Keywords: gst, drop, droplet, waves, transition, liquid-liquid phase transition, nonequilibrium systems