Translate

Visualizzazione post con etichetta droplet. Mostra tutti i post
Visualizzazione post con etichetta droplet. Mostra tutti i post

sabato 6 marzo 2021

# gst: the dynamics of a collective bubble (in a foam) that collapse in a droplet

<< Foams have unique properties that distinguish them from ordinary liquids and gases, and are ubiquitously observed in nature, both in biological systems and industrial products. (..) understanding how bubbles in a foam collapse is an important aspect for product longevity and tailoring physical properties. >>

<< Once a crack appears near the border and a collapse front is formed, (AA) find that the curvature of the front reverses as it migrates, followed by the emergence and emission of droplets. >>

<<  It is particularly interesting to note how the shape of the front changes as it migrates. >>

Naoya Yanagisawa, Marie Tani, Rei Kurita. Dynamics and mechanism of liquid film collapse in a foam. Soft Matter 17, 1738-45. doi: 10.1039/ D0SM02153A. Feb 17, 2021.


<< An initial crack in a film creates a RVPB (released vertical plateau border). A second crack event in the film causes a "collapse front" to be formed which sweeps up the RVPB before its shape begins to flatten and invert, finally leaving a droplet. >>

When foams collapse (and when they don't). Tokyo Metropolitan University. Mar 01, 2021. 




mercoledì 24 febbraio 2021

# gst: apropos of 'transitions', slow dynamics of complex connected networks can control the rate of demixing

<< A space- spanning network structure is a basic morphology in phase separation of soft and biomatter, alongside a droplet one. Despite its fundamental and industrial importance, the physical principle underlying such network- forming phase separation remains elusive. >>

AA << find that phase- separation dynamics is controlled by mechanical relaxation of the network- forming dense phase, whose limiting process is permeation flow of the solvent for colloidal suspensions and heat transport for pure fluids. This universal coarsening law would contribute to the fundamental physical understanding of network-forming phase separation. >>

Michio Tateno, Hajime Tanaka. Power-law coarsening in network-forming phase separation governed by mechanical relaxation. Nat Commun 12, 912. doi: 10.1038/  s41467-020-20734-8. Feb 10,  2021.

Discovery of a new law of phase separation. University of Tokyo. Feb 10, 2021. 


Also

keyword 'transition' in FonT


keyword 'transition' | 'transizion*' in Notes (quasi-stochastic poetry)







giovedì 8 ottobre 2020

# gst: observing the crystallization process in a droplet

<< Crystallization is the assembly of atoms or molecules into highly ordered solid crystals, which occurs in natural, biological, and artificial systems. However, crystallization in confined spaces, such as the formation of the protein shell of a virus, is poorly understood. Researchers are trying to control the structure of the final crystal formed in a confined space to obtain crystals with desired properties, which requires thorough knowledge of the crystallization process. >>

AA << used a droplet of a colloid—a dispersion of liquid particles in another liquid, like milk—as a model for single atoms or molecules in a sphere. Unlike single atoms or molecules, which are too small to easily observe, the colloid particles were large enough to visualize using a microscope. This allowed the researchers to track the ordering of single particles in real time during crystallization. >>

<< We visualized the organization process of colloid particles in numerous droplets under different conditions to provide a picture of the crystallization process in a sphere, >> Peng Tan

<< Based on their observations, the team proposed that the crystallization process involved three stages: initial ordering on the surface "skin" of the droplet, nucleation and growth in the core of the droplet, and then slow ripening of the whole structure. First, a skin consisting of a single layer of ordered colloid particles rapidly formed on the droplet surface. Next, crystallization occurred in the core of the droplet, far from the crystallized skin. The competition between crystallization in these two regions controlled the structure of the final crystal. The researchers found that the "soft" (long-range) interactions between the negatively charged colloid particles affected their organization and the resulting crystal structure. These soft interactions are dominated by kinetics, that is, the interactions that form the fastest, rather than those that use the least energy to give the thermodynamically stable structure, illustrating that kinetics plays an important role in crystallization in a confined space. It was already known that thermodynamics contributes strongly to the final structure of crystals. >>

Having a ball: Crystallization in a sphere. University of Tokyo. Sep 21, 2020.


Chen Y., Yao Z., et al. Morphology selection kinetics of crystallization in a sphere. Nat. Phys. doi: 10.1038/ s41567-020-0991-9. Sep 21, 2020.


Also

Control of material crystallization by agitation. Osaka University. Jun 08, 2017.


keyword 'drop' or 'droplet' in FonT





sabato 1 agosto 2020

# GST: how to harvest energy from impacting droplets

AA << designed an electrical generator that can harvest energy from impacting droplets and other sources of mechanical energy. (..) The electrical generator can be explained as being a permanently charged capacitor, also known as an electret. >>

They << managed to convert 11.8% of the mechanical energy of an impacting droplet into electrical energy, which is a significant improvement compared to the efficiency of similar devices. Furthermore, they demonstrated that the energy harvesting efficiency does not degrade after 100 days, requiring only a single 15 minute charging cycle before long-term application. >>

K.W. Wesselink. Generator developed for harvesting energy from droplets. 
University of Twente. Jul 8, 2020.


Hao Wu, Niels Mendel, et al. Charge Trapping‐Based Electricity Generator (CTEG): An Ultrarobust and High Efficiency Nanogenerator for Energy Harvesting from Water Droplets. Advanced Materials. doi: 10.1002/ adma.202001699. July 6, 2020.


Hao Wu, Niels Mendel, et al. Energy harvesting from drops impacting onto charged surfaces. Phys. Rev. Lett. Jun 25, 2020.


Also





venerdì 3 luglio 2020

# gst: contactless manipulation of droplets levitating in an acoustic wave

<< A unique, versatile, and material-independent approach to manipulate contactlessly and merge two chemically distinct droplets suspended in an acoustic levitator is reported. Large-amplitude axial oscillations are induced in the top droplet by low-frequency amplitude modulation of the ultrasonic carrier wave, which causes the top sample to merge with the sample in the pressure minimum below. The levitator is enclosed within a pressure-compatible process chamber to enable control of the environmental conditions. The merging technique permits precise control of the substances affecting the chemical reactions, the sample temperature, the volumes of the liquid reactants down to the picoliter range, and the mixing locations in space and time. >>

Stephen J. Brotton, Ralf I. Kaiser. 
Controlled Chemistry via Contactless Manipulation and Merging of Droplets in an Acoustic Levitator. Anal. Chem. 2020, 92, 12, 8371–8377. doi: 10.1021/ acs.analchem.0c00929. Jun 1, 2020. 


Levitating droplets allow scientists to perform 'touchless' chemical reactions.  American Chemical Society. Jun 24, 2020.



lunedì 29 giugno 2020

# gst: self-assembly in complex patterns during the evaporation of a sessile droplet

<< When a sessile droplet containing a solute in a volatile solvent evaporates, flow in the droplet can transport and assemble solute particles into complex patterns. >>

Bryan A. Nerger, P.-T. Brun, Celeste M. Nelson. Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Science Advances. Vol. 6, no. 24, eaaz7748. doi: 10.1126/ sciadv.aaz7748. Jun 12, 2020.


Thamarasee Jeewandara. Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Phys.org. Jun 25, 2020


Also

keyword 'Marangoni effect'





martedì 22 ottobre 2019

# gst: the transition from quiescent spherical cap states to self-piloted motile states of volatile droplets

<< When a volatile solvent droplet is deposited on a freely floating swellable sheet, it can spontaneously become lobed, asymmetric, and either spin, slide or move via a combination of the two. This process of symmetry-breaking is a consequence of the solvent droplet swelling the membrane and its inhomogeneous evaporation from the membrane, coupled with the hydrodynamics within the droplet. By tuning the membrane thickness and the droplet size, (AA) find a critical threshold that determines the transition from a quiescent spherical cap state to a self-piloted motile state. Simple scaling laws determine the angular and linear velocities of the droplets, and a 1D analog experiment confirms the relative roles of evaporation, swelling and viscoelastic dissipation.  >>

Aditi Chakrabarti, Gary P. T. Choi, L. Mahadevan. Spontaneous spin-sliding of volatile drops on swelling sheets. 
arXiv:1910.07064v1 [cond-mat.soft]. Oct 15, 2019

https://arxiv.org/abs/1910.07064   

Also

keyword 'droplet' in FonT  

https://flashontrack.blogspot.com/search?q=droplet