Translate

Visualizzazione dei post in ordine di data per la query turbulence. Ordina per pertinenza Mostra tutti i post
Visualizzazione dei post in ordine di data per la query turbulence. Ordina per pertinenza Mostra tutti i post

venerdì 2 maggio 2025

# gst: period-doubling route to chaos in viscoelastic flows

<< Polymer solutions can develop chaotic flows, even at low inertia. This purely elastic turbulence is well studied, but little is known about the transition to chaos. In two-dimensional (2D) channel flow and parallel shear flow, traveling wave solutions involving coherent structures are present for sufficiently large fluid elasticity. >>

AA << numerically study 2D periodic parallel shear flow in viscoelastic fluids, and (They) show that these traveling waves become oscillatory and undergo a series of period-doubling bifurcations en-route to chaos. >>

Jeffrey Nichols, Robert D. Guy, Becca Thomases. Period-doubling route to chaos in viscoelastic Kolmogorov flow. Phys. Rev. Fluids 10, L041301. Apr 17, 2025.

Also: chaos, waves, elastic, turbulence, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chaos, waves, traveling waves, elasticity, viscoelastic fluids, turbulence, elastic turbulence, period-doubling bifurcations, transitions

giovedì 24 aprile 2025

# gst: stochastic surfing turbulent vorticity.

<< The chaotic dynamics of small-scale vorticity plays a key role in understanding and controlling turbulence, with direct implications for energy transfer, mixing, and coherent structure evolution. >>

Here AA << use a combination of experiments, theory and simulations to show that small magnetic particles of different densities, exploring flow regions of distinct vorticity statistics, can act as effective probes for measuring and forcing turbulence at its smallest scale. The interplay between the magnetic torque, from an externally controllable magnetic field, and hydrodynamic stresses, from small-scale turbulent vorticity, reveals an extremely rich phenomenology. >>

Notably, AA << present the first observation of stochastic resonance for particles in turbulence: turbulent fluctuations, effectively acting as noise, counterintuitively enhance the particle rotational response to external forcing. (They) identify a pronounced resonant peak in particle rotational phase-lag when the applied magnetic field matches the characteristic intensity of small-scale vortices. >>

<< Furthermore, (They) uncover a novel symmetry-breaking mechanism: an oscillating magnetic field with zero-mean angular velocity remarkably induces net particle rotation in turbulence with zero-mean vorticity, as turbulent fluctuations aid the particle in "surfing" the magnetic field. >>

Ziqi Wang, Xander M. de Wit, et al. Stochastic surfing turbulent vorticity. arXiv: 2504.08346v1 [physics.flu-dyn]. Apr 11, 2025. 

Also: vortex, turbulence, noise, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, vortices, turbulence, turbulent fluctuations, small-scale turbulent vorticity, stochastic resonance, noise, transitions 

mercoledì 16 aprile 2025

# gst: apropos of drift-waves, their coherent puff and slugs in transitional turbulence.

<< The long-term development of the transitional regime of drift-wave turbulence is studied in a magnetized plasma column by means of the conditional-average technique. >>

<< In the transitional regime, small changes in the magnetic-field strength as control parameter lead to large changes in the correlation times, indicating the existence of a critical point of an underlying nonequilibrium continuous phase transition. >>

<< This and the spatiotemporal dynamics shows similarities to puff splitting, slug-gap splitting, and puff jamming. >>️

P. Manz, S. Knauer, et al. Coherent puff and slugs in transitional drift-wave turbulence. Phys. Rev. E 111, 045203. April 8, 2025.

Also: waves, turbulence, jamming, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, waves, drift-waves, turbulence, jamming, transition, puff splitting, slug-gap splitting, puff jamming 

martedì 15 aprile 2025

# gst: experimental investigation of turbulence modulation by deformable bubbles

<< In this work (AA) experimentally investigate the turbulence modulation in the wake of deforming bubbles in homogeneous and isotropic turbulence, in the regime where the turbulence fluctuation is stronger than or comparable to the bubble rising velocity. >>

<< In a quiescent or weak turbulence, the wake has a persistent direction due to the buoyancy. In turbulence, however, (Their) results suggest that the decorrelation time for the slip velocity roughly equals the bubble-sized eddy turn over time. It suggests that, when turbulence becomes intense enough, the slip velocity changes its direction and magnitude so frequently that a wake barely has time to develop. >>

<< As a result, both the intensity and length of the wake are significantly modified. Nevertheless, with sufficient bubble Reynolds number, the wake, albeit limited, can still modulate surrounding turbulence. >>

<< The results suggest that the local turbulence is augmented by the bubble wake, and the amount of augmentation depends heavily on the bubble Reynolds number, the orientation of the bubble semimajor axis relative to the slip velocity, and the bubble deformation. >>️

Xu Xu, Shiyong Tan, et al. Experimental investigation of turbulence modulation by deformable bubbles. Phys. Rev. Fluids 10, 033605. March 31, 2025.

Also: bubble, disorder & fluctuations, turbulence, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, deformable bubbles, bubble wake, bubble-bubble interaction, disorder & fluctuations, turbulence, turbulence modulation, surrounding turbulence, vortex, slip velocity, buoyancy

sabato 12 aprile 2025

# gst: chaotic and time-periodic edge states in square duct flow.


AA << analyse the dynamics within the stability boundary between laminar and turbulent square duct flow with the aid of an edge-tracking algorithm. As for the circular pipe, the edge state turns out to be a chaotic attractor within the edge if the flow is not constrained to a symmetric subspace. The chaotic edge state dynamics is characterised by a sequence of alternating quiescent phases and regularly occurring bursting episodes. These latter reflect the different stages of the well-known streak-vortex interaction in near-wall turbulence: the edge states feature most of the time a single streak with a number of flanking quasi-streamwise vortices attached to one of the four surrounding walls. The initially straight streak undergoes the classical linear instability and eventually breaks in an intense bursting event due to the action of the quasi-streamwise vortices. At the same time, the vortices give rise to a new generation of low-speed streaks at one of the neighbouring walls, thereby causing the turbulent activity to `switch' from one wall to the other. >>

<< When restricting the edge dynamics to a single or twofold mirror-symmetric subspace, on the other hand, the outlined bursting and wall-switching episodes become self-recurrent in time. These edge states thus represent the first periodic orbits found in the square duct. In contrast to the chaotic edge states in the non-symmetric case, the imposed symmetries enforce analogue bursting cycles to simultaneously appear at two parallel opposing walls in a mirror-symmetric configuration. Both localisation of the turbulent activity to one or two walls and wall switching are shown to be a common phenomenon in low Reynolds number duct turbulence. (They) therefore argue that the marginally turbulent trajectories transiently visit the identified edge states during these episodes, so that the edge states become actively involved in the turbulent dynamics. >>️

Markus Scherer, Markus Uhlmann, Genta Kawahara. Chaotic and time-periodic edge states in square duct flow. arXiv: 2503.22519v1 [physics.flu-dyn]. Mar 28, 2025️. 

Also: turbulence, chaos, vortex, instability, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence, duct turbulence, chaos, chaotic edge states, vortex, instability, wall-switching episodes, bursting cycles 

giovedì 10 aprile 2025

# gst: multiparticle dispersion in rotating-stratified turbulent flows (when stratification increases turbulent fluctuations may not be weaker)

AA << study the relative movement of groups of two (pairs) and four (tetrahedra) Lagrangian particles using direct numerical simulations of the stably stratified Boussinsesq equations, with Brunt-Väisälä frequency 𝑁 and Coriolis parameter 𝑓. >>

<< In all cases considered, (AA) demonstrate that the relative particle motion differs depending on whether dispersion is considered forward or backward in time, although the asymmetry becomes less pronounced when stratification and rotation increase. On the other hand, the strong fluctuations in the dispersion between two particles become more extreme when 𝑁 and 𝑓  increase. (They) also find evidence for the formation of shear layers, which become more pronounced as 𝑁 and 𝑓  become larger. Finally, (They) show that the irreversibility on the dispersion of a set of particles initially forming a regular tetrahedron becomes weaker when the influence of stratification and rotation increases, a property that (They) relate to that of the perceived rate-of-strain tensor. >>️

<< Unexpectedly, (AA) observe that the higher moments of particle separation, in particular the normalized fourth-order central moment of the separation (the kurtosis Kr) is an increasing function of stratification and rotation. This is surprising, as when stratification increases the turbulent fluctuations are expected to be weaker, (..) >>️

Sebastian Gallon, Fabio Feraco, et al. Multiparticle dispersion in rotating-stratified turbulent flows. Phys. Rev. Fluids 10, 034605. Mar 17, 2025. 

Also: particle, turbulence, disorder & fluctuations, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, particle, turbulence, disorder, fluctuations

martedì 25 marzo 2025

# gst: droplet bag formation in turbulent airflows.


AA << present numerical simulations investigating the evolution of liquid droplets into baglike structures in turbulent airflows. The droplet bag breakup problem is of significance for many multiphase processes in scientific and engineering applications. Turbulent fluctuations are introduced synthetically into a mean flow, and the droplet is inserted when the air-phase turbulence reaches a statistically stationary state. The morphological evolution of the droplet under different turbulence configurations is retrieved and analyzed in comparison with laminar aerobreakup results. While the detailed evolution history of individual droplets varies widely between different realizations of the turbulent flow, common dynamic and morphological evolution patterns are observed. >>

<< The presence of turbulence is found to enhance the drag coefficient of the droplet as it flattens. At late times, the droplet becomes tilted and increasingly corrugated under strong turbulence intensity. (AA) quantify these phenomena and discuss their possible governing mechanisms associated with turbulence intermittency. >>

<< Lastly, the influences of liquid-gas viscosity ratio are examined and the implications of air-phase turbulence on the later bag film breakup process are discussed. >>️

Kaitao Tang, Thomas A. A. Adcock, Wouter Mostert. Droplet bag formation in turbulent airflows. Phys. Rev. Fluids 10, 033604. March 19, 2025.

Also: drop, droplet, droploid, turbulence, fluctuations, intermittency, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, turbulence, fluctuations, intermittency

venerdì 21 marzo 2025

# poe: onda di gioco

<<  
Nota a far mescole coll' endogeno docile avo melode /
declamando su traccia nevale di dondolio di geco /
l' evento d' onde nella forma di compressa logica ode /
che, se liberata, s' autoespande in frange d' agile eco.
>>

14.31 13/09/2004

'solebat quid esset litus ita definire: "qua fluctus eluderet"'. In: Cicerone. 'de natura deorum'.


Anchewaves, in   
Notes (quasi-stochastic poetry)  https://inkpi.blogspot.com/search?q=onda 

Anche: World Poetry Day, in

Keywords: poe, poetry, quasi-stochastic poetry, PoetryDay, WorldPoetryDay, InternationalPoetryDay, waves, rogue waves, shock waves, solitons, turbulence, instability

sabato 8 marzo 2025

# gst: 'jazzy' intermittency, its onset and multiscaling in active turbulence.

<< Recent results suggest that highly active, chaotic, nonequilibrium states of living fluids might share much in common with high Reynolds number, inertial turbulence. (AA) now show, by using a hydrodynamical model, the onset of intermittency and the consequent multiscaling of Eulerian and Lagrangian structure functions as a function of the bacterial activity. (Their) results bridge the worlds of low and high Reynolds number flows as well as open up intriguing possibilities of what makes flows intermittent. >>️

AA << believe that (Their) work significantly understands the dynamics of dense bacterial suspensions in ways which isolates the truly turbulent effects from those stemming from simpler chaotic motion. More intriguingly, and at a broader conceptual framework, this study yet again underlines that intermittency can be an emergent phenomena in flows where the nonlinearity does not, trivially, dominate the viscous damping. Indeed, there is increasing evidence of intermittency emerging in systems which are not turbulent in the classical sense. Examples include flows with modest Reynolds number of∼O(10e2) showing intermittent behaviour characteristic of high Reynolds turbulence, self-propelling active droplets with intermittent fluctuations, active matter systems of self-propelled particles, which undergo a glass transition, with an intermittent phase before dynamical arrest, and perhaps most pertinently, in elastic turbulence. Thus, (AA) believe, (Their) work will contribute further to understanding what causes flows to turn intermittent. Answers to such questions will also help in understanding fundamental questions in high Reynolds number turbulence. >>️

Kolluru Venkata Kiran, Kunal Kumar, et al. Onset of Intermittency and Multiscaling in Active Turbulence. Phys. Rev. Lett. 134, 088302. Feb 28, 2025. 

Also: intermittency, transition, fluctuations, drop, droplet, droploid, elastic, turbulence, chaos, jazz, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, intermittency, transitions, fluctuations, drops, droplets, droploids, elasticity, turbulence, chaos, jazz


venerdì 7 marzo 2025

# gst: transition to inverse cascade in turbulent rotating convection in absence of the large-scale vortex.


<< Turbulent convection under strong rotation can develop an inverse cascade of kinetic energy from smaller to larger scales. In the absence of an effective dissipation mechanism at the large scales, this leads to the pile-up of kinetic energy at the largest available scale, yielding a system-wide large-scale vortex (LSV). Earlier works have shown that the transition into this state is abrupt and discontinuous. >>

Here, AA << study the transition to the inverse cascade in the case where the inverse energy flux is dissipated before it reaches the system scale, suppressing the LSV formation. (They) demonstrate how this can be achieved in direct numerical simulations by using an adapted form of hypoviscosity on the horizontal manifold. (They) find that in the absence of the LSV, the transition to the inverse cascade becomes continuous. This shows that it is the interaction between the LSV and the background turbulence that is responsible for the observed discontinuity. >>

AA << furthermore show that the inverse cascade in absence of the LSV has a more local signature compared to the case with LSV. >>️

Xander M. de Wit. Transition to inverse cascade in turbulent rotating convection in absence of the large-scale vortex. arXiv: 2502.16275v1 [physics.flu-dyn]. Feb 22, 2025. 

Also: turbulence, dissipation, transition, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence, dissipation, transitions, vortices


giovedì 6 marzo 2025

# gst: turbulence-induced fluctuating interfaces in heterogeneously-active suspensions.

AA << investigate the effects of heterogeneous (spatially varying) activity in a hydrodynamical model for dense bacterial suspensions, confining ourselves to experimentally realizable, simple, quenched, activity patterns. (They) show that the evolution of the bacterial velocity field under such activity patterning leads to the emergence of hydrodynamic interfaces separating spatially localized turbulence from jammed frictional surroundings. (They) characterise the intermittent and multiscale fluctuations of this interface and also investigate how heterogeneity influences mixing via the residence times of Lagrangian tracers. >>

This AA work << reveals how naturally occurring heterogeneities could decisively steer active flows into more complex configurations than those typically studied, opening up parallels to droplet dynamics, front propagation and turbulent mixing layers. >>️

Siddhartha Mukherjee, Kunal Kumar, Samriddhi Sankar Ray. Turbulence-Induced Fluctuating Interfaces in Heterogeneously-Active Suspensions. arXiv: 2502.16443v1 [cond-mat.soft]. Feb 23, 2025. 

Also: fluctuations, turbulence, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, fluctuations, vortices, turbulence, turbulent and quiescent flows


mercoledì 5 marzo 2025

# gst: amplification of turbulence through multiple planar shocks.


AA << study the amplification of isotropic, incompressible turbulence through multiple planar, collisional shocks, using analytical linear theory. There are two limiting cases (They) explore. The first assumes shocks occur rapidly in time such that the turbulence does not evolve between shocks. Whereas the second case allows enough time for turbulence to isotropize between each shock. For the latter case, through a quasi-equation-of-state, we show that the weak multi-shock limit is agnostic to the distinction between thermal and vortical turbulent pressures, like an isotropic volumetric compression. >>

<< When turbulence does not return to isotropy between shocks, the generated anisotropy -- itself a function of shock strength -- can feedback on amplification by further shocks, altering choices for maximal or minimal amplification. >>

<< In addition for this case, (AA) find that amplification is sensitive to the shock ordering. (They) map how choices of shock strength can impact these amplification differences due to ordering, finding, for example, shock pairs which lead to identical mean post-shock fields (density, temperature, pressure) but maximally distinct turbulent amplification. >>️

Michael F. Zhang, Seth Davidovits, Nathaniel J. Fisch. Amplification of turbulence through multiple planar shocks. arXiv: 2502.18708v1 [astro-ph.GA]. Feb 25, 2025. 

Also: waves, turbulence, vortex, crack, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, waves, turbulence, vortex, shocks 


lunedì 3 marzo 2025

# gst: apropos of transitions to turbulence, pulsatility delays the transition to sustained turbulence in quasi-2D shear flows

<< Two-dimensional disturbances require high Reynolds numbers to incite transition from a steady base flow, as transient growth is modest. With the addition of an oscillatory base flow component, (AA) work shows that the transient growth experienced by two-dimensional initial perturbations is often well above that provided by the steady component. >>

<< However, as has been shown for three-dimensional flows [B. Pier and P. J. Schmid, J. Fluid Mech. 926, A11 (2021)], the transient growth is almost entirely composed of modal intracyclic growth, rather than a transient mechanism which takes advantage of non-normality. This lack of transient growth, relative to the severe decay induced by the favorable pressure gradient during the acceleration phase of the oscillatory base flow, only ever delays the transition to sustained turbulence. >>

<< Thus, a nonoscillatory driving force remains the most efficient strategy for sustained turbulence in quasi-two-dimensional shear flows. The only benefit provided by pulsatility is that the amplitude of the initial condition required to trigger intermittent turbulence is orders of magnitude smaller. >>️

Christopher J. Camobreco, Alban Pothérat, Gregory J. Sheard. Pulsatility delays the transition to sustained turbulence in quasi-two-dimensional shear flows. Phys. Rev. Fluids 10, 023905. Feb 25, 2025.

Also: pause, transition, turbulence, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, pause, transition, turbulence, vortex


mercoledì 19 febbraio 2025

# gst: alignment-induced self-organization of autonomously steering microswimmers: turbulence, clusters, vortices, and jets.


<< Microorganisms can sense their environment and adapt their movement accordingly, which gives rise to a multitude of collective phenomena, including active turbulence and bioconvection. In fluid environments, collective self-organization is governed by hydrodynamic interactions. >>

<< By large-scale mesoscale hydrodynamics simulations, (AA) study the collective motion of polar microswimmers, which align their propulsion direction by hydrodynamic steering with that of their neighbors. The simulations of the employed squirmer model reveal a distinct dependence on the type of microswimmer—puller or pusher—flow field. No global polar alignment emerges in both cases. Instead, the collective motion of pushers is characterized by active turbulence, with nearly homogeneous density and a Gaussian velocity distribution; strong self-steering enhances the local coherent movement of microswimmers and leads to local fluid-flow speeds much larger than the individual swim speed. >>

<< Pullers exhibit a strong tendency for clustering and display velocity and vorticity distributions with fat exponential tails; their dynamics is chaotic, with a temporal appearance of vortex rings and fluid jets. >>

AA << results show that the collective behavior of autonomously steering microswimmers displays a rich variety of dynamic self-organized structures. >>

Segun Goh, Elmar Westphal, et al. Alignment-induced self-organization of autonomously steering microswimmers: Turbulence, clusters, vortices, and jets. Phys. Rev. Research 7, 013142. Feb 7, 2025. 

Also: swim, microswimmer, particle, turbulencechaos, noise, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, swim, swimmer, microswimmers, particle, turbulence, chaos, noise


sabato 8 febbraio 2025

# gst: criticality and multistability in quasi-2D turbulence

       Fig. 1(a) Helmholtz resonators


<< Two-dimensional (2D) turbulence, despite being an idealization of real flows, is of fundamental interest as a model of the spontaneous emergence of order from chaotic flows. The emergence of order often displays critical behavior, whose study is hindered by the long spatial and temporal scales involved. >>

Here AA << experimentally study turbulence in periodically driven nanofluidic channels with a high aspect ratio using superfluid helium. (They) find a multistable transition behavior resulting from cascading bifurcations of large-scale vorticity and critical behavior at the transition to quasi-2D turbulence consistent with phase transitions in periodically driven many-body systems. >>

AA << demonstrate that quasi-2D turbulent systems can undergo an abrupt change in response to a small change in a control parameter, consistent with predictions for large-scale atmospheric or oceanic flows. >>️

Filip Novotny, Marek Talir, et al. Critical behavior and multistability in quasi-two-dimensional turbulence. arXiv: 2406.08566v1 [physics.flu-dyn]. Jun 12, 2024.

Also: order, disorder, disorder & fluctuations, turbulence, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, order, disorder, disorder & fluctuations, criticality, turbulence, transition 


mercoledì 5 febbraio 2025

# gst: discontinuous transitions to active nematic turbulence.


<< Active fluids exhibit chaotic flows at low Reynolds number known as active turbulence. Whereas the statistical properties of the chaotic flows are increasingly well understood, the nature of the transition from laminar to turbulent flows as activity increases remains unclear. Here, through simulations of a minimal model of unbounded active nematics, (AA) find that the transition to active turbulence is discontinuous. (They) show that the transition features a jump in the mean-squared velocity, as well as bistability and hysteresis between laminar and chaotic flows. >>

<< From distributions of finite-time Lyapunov exponents, (AA) identify the transition at a value A∗≈4900 of the dimensionless activity number. Below the transition to chaos, (They) find subcritical bifurcations that feature bistability of different laminar patterns. These bifurcations give rise to oscillations and to chaotic transients, which become very long close to the transition to turbulence. Overall, (Their) findings contrast with the continuous transition to turbulence in channel confinement, where turbulent puffs emerge within a laminar background. >>

AA << propose that, without confinement, the long-range hydrodynamic interactions of Stokes flow suppress the spatial coexistence of different flow states, and thus render the transition discontinuous. >>️

Malcolm Hillebrand, Ricard Alert. Discontinuous Transition to Active Nematic Turbulence. arXiv: 2501.06085v1 [cond-mat.soft]. Jan 10, 2025.

Also: chaos, transition, turbulence, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chaos, transition, turbulence, jumps, active nematics


giovedì 23 gennaio 2025

# gst: apropos of viscoelastic flow instabilities, uncertainty in elastic turbulence.

<< Elastic turbulence can lead to increased flow resistance, mixing and heat transfer. Its control - either suppression or promotion - has significant potential, and there is a concerted ongoing effort by the community to improve our understanding. >>

AA << identify four regimes of uncertainty evolution, characterised by I) rapid transfer to large scales, with large scale growth rates of τ6 (where τ represents time), II) a dissipative reduction of uncertainty, III) exponential growth at all scales, and IV) saturation. These regimes are governed by the interplay between advective and polymeric contributions (which tend to amplify uncertainty), viscous, relaxation and dissipation effects (which reduce uncertainty), and inertial contributions. >>

<< In elastic turbulence, reducing Reynolds number increases uncertainty at short times, but does not significantly influence the growth of uncertainty at later times. At late times, the growth of uncertainty increases with Weissenberg number, with decreasing polymeric diffusivity, and with the logarithm of the maximum length scale, as large flow features adjust the balance of advective and relaxation effects. >>

Jack R. C. King, Robert J. Poole, et al. Uncertainty in Elastic Turbulence. arXiv: 2501.09421v1 [physics.flu-dyn]. Jan 16, 2025. 

Also: uncertainty, elastic, turbulence, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, uncertainty, elastic, elasticity, turbulence 



mercoledì 11 dicembre 2024

# gst: turbulence in viscous binary fluid mixtures induced by interfacial fluctuations.

AA << demonstrate the existence of interface-induced turbulence, an emergent nonequilibrium statistically steady state with spatiotemporal chaos, which is induced by interfacial fluctuations in low-Reynolds-number binary-fluid mixtures. >>️

<< Furthermore (they) demonstrate diffusive behavior at long times, a hallmark of strong mixing in turbulent flows. >>️

Nadia Bihari Padhan, Dario Vincenzi, Rahul Pandit. Interface-induced turbulence in viscous binary fluid mixtures. Phys. Rev. Fluids 9, L122401. Dec 3, 2024. 

Also: fluctuations, turbulence, transition,  in https://www.inkgmr.net/kwrds.html 

Keywords: gst, fluctuations, turbulence, transition 



giovedì 5 dicembre 2024

# gst: intermittency of bubble deformation in turbulence.

<< The deformation of finite-sized bubbles in intense turbulence exhibits complex geometries beyond simple spheroids as the bubbles exchange energy with the surrounding eddies across a wide range of scales. (AA)  study investigates deformation via the velocity of the most stretched tip of the deformed bubble in three dimensions, as the tip extension results from the compression of the rest of the interface by surrounding eddies. >>

<< The results show that the power spectrum based on the tip velocity exhibits a scaling akin to that of the Lagrangian statistics of fluid elements, but decays with a distinct timescale and magnitude modulated by the Weber number based on the bubble size. This indicates that the interfacial energy is primarily siphoned from eddies of similar sizes as the bubble. >>

<< Moreover, the tip velocity appears much more intermittent than the velocity increment, and its distribution near the extreme tails can be explained by the proposed model that accounts for the fact that small eddies with sufficient energy can contribute to extreme deformation. >>

<< These findings provide a framework for understanding the energy transfer between deformable objects and multiscale eddies in intense turbulence. >>

Xu Xu, Yinghe Qi, et al. Intermittency of Bubble Deformation in Turbulence. Phys. Rev. Lett. 133, 214001. Nov 19, 2024.

Also: bubble, turbulence, intermittency, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, turbulence, intermittency


venerdì 8 novembre 2024

# gst: phase transitions in anisotropic turbulence.


<<  
Turbulence is a widely observed state of fluid flows, characterized by complex, nonlinear interactions between motions across a broad spectrum of length and time scales. While turbulence is ubiquitous, from teacups to planetary atmospheres, oceans and stars, its manifestations can vary considerably between different physical systems. For instance, three-dimensional (3D) turbulent flows display a forward energy cascade from large to small scales, while in two-dimensional (2D) turbulence, energy cascades from small to large scales. In a given physical system, a transition between such disparate regimes of turbulence can occur when a control parameter reaches a critical value. The behavior of flows close to such transition points, which separate qualitatively distinct phases of turbulence, has been found to be unexpectedly rich. Here, (AA) survey recent findings on such transitions in highly anisotropic turbulent fluid flows, including turbulence in thin layers and under the influence of rapid rotation. (They) also review recent work on transitions induced by turbulent fluctuations, such as random reversals and transitions between large-scale vortices and jets, among others. The relevance of these results and their ramifications for future investigations are discussed.
>>️

Adrian van Kan. Phase Transitions in Anisotropic Turbulence. arXiv: 2408.02844v1 [physics.flu-dyn]. Aug 5, 2024. 

Alsoturbulence, vortex, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence, vortex