Translate

Visualizzazione dei post in ordine di data per la query droplet. Ordina per pertinenza Mostra tutti i post
Visualizzazione dei post in ordine di data per la query droplet. Ordina per pertinenza Mostra tutti i post

mercoledì 10 aprile 2024

# gst: exploring the on-demand dynamical generation of a plethora of dispersive shock waves arising in attractive one-dimensional droplet-bearing environment.

AA << demonstrate the controllable generation of distinct types of dispersive shock-waves emerging in a quantum droplet bearing environment with the aid of step-like initial conditions. Dispersive regularization of the ensuing hydrodynamic singularities occurs due to the competition between meanfield repulsion and attractive quantum fluctuations. This interplay delineates the dominance of defocusing (hyperbolic) and focusing (elliptic) hydrodynamic phenomena respectively being designated by real and imaginary speed of sound. >>

<< Surprisingly, dispersive shock waves persist across the hyperbolic-to-elliptic threshold, while a plethora of additional wave patterns arise, such as rarefaction waves, traveling dispersive shock waves, (anti)kinks and droplet wavetrains. >>

AA << results pave the way for unveiling a multitude of unexplored coherently propagating waveforms in such attractively interacting mixtures. >>

Sathyanarayanan Chandramouli, Simeon I. Mistakidis, Garyfallia C. Katsimiga, Panayotis G. Kevrekidis. 
Dispersive shock waves in a one-dimensional droplet-bearing environment. arXiv: 2404.02998v2 [nlin.PS]. Apr 5, 2024. 

Also: waves, drop, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, waves, drops 


lunedì 8 aprile 2024

# gst: apropos of evaporation, puncturing of active drops

<< By virtue of self-propulsion, active particles impart intricate stresses to the background fluids. (..) this active stress can be utilized to greatly control evaporation dynamics of active drops. >>

AA << discover a new phenomenon of puncturing of the active drops, where the air-liquid interface of the drop undergoes spontaneous tearing and there occurs a formation of a new three-phase contact line due to the liquid-air interface hitting the liquid-solid interface through evaporation-driven mass loss. Post puncturing, (AA) see an inside-out evaporation of the drop, where the new contact line sweeps towards the pinned outer contact line of the drops, contrasting regular drops that straightaway shrink to zero volume with self-similar shape. >>

<< Furthermore, (..) the activity inside the drops can manipulate the three-phase contact-line dynamics, which for contractile drops can result in an up to 50% enhanced lifetime of the drop and 33% quicker evaporation for extensile drops. By analyzing the flux distribution inside the drop, (AA) gain insights on nonintuitive deposition patterns (e.g., ring galaxy type deposits that demonstrate controllable spatial gradients in the concentrations of the deposited particles) of active particles, which are oftentimes biological substances or bimetallic nanoparticles of interest. >>

Ghansham Rajendrasingh Chandel, Vishal Sankar Sivasankar, Siddhartha Das. Evaporation of active drops: Puncturing drops and particle deposits of ring galaxy patterns. Phys. Rev. Fluids 9, 033603. Mar 27, 2024. 

Also: drop, particle, evaporation, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, particle, evaporation, transition, drop interactions, droplet, droploid


venerdì 15 marzo 2024

# gst: multi-component droplets may exhibit self-lubricating effects

<< Over the past decade, there has been a growing interest in the study of multicomponent drops. These drops exhibit unique phenomena, as the interplay between hydrodynamics and the evolving physicochemical properties of the mixture gives rise to distinct and often unregulated behaviors. >>

<< Of particular interest is the complex dynamic behavior of the drop contact line, which can display self-lubrication effect. The presence of a slipping contact line in self-lubricating multicomponent drops can suppress the coffee-stain effect, conferring valuable technological applications. >>

Huanshu Tan, Detlef Lohse, Xuehua Zhang. Self-Lubricating Drops. arXiv: 2403.01207v1 [physics.flu-dyn]. Mar 2, 2024

Also: drop droplet droploid, in https://www.inkgmr.net/kwrds.html

Keywords: drop, droplet, droploid, multicomponent drops, drop contact line, self-lubrication



mercoledì 21 febbraio 2024

# gst: when volatile droplets dance across a surface erratically (along random trajectories)

<< When a drop of a volatile liquid is deposited on a uniformly heated wettable, thermally conducting substrate, one expects to see it spread into a thin film and evaporate. >>️

<< Contrary to this intuition, due to thermal Marangoni contraction, the deposited drop contracts into a spherical-cap-shaped puddle, with a finite apparent contact angle. Strikingly, this contracted droplet, above a threshold temperature, well below the boiling point of the liquid, starts to spontaneously move on the substrate in an apparently erratic way. >>️

Pallav Kant, Mathieu Souzy, et al. Autothermotaxis of volatile drops. Phys. Rev. Fluids 9, L012001. Jan 31, 2024. 

Rachel Berkowitz. Hot Surfaces Make Droplets Move Erratically. Physics 17, s14. Jan 31, 2024. 

Also: drop, bubble, erratic

Keywords: gst, drop, bubble, erratic, thermotaxis, autothermotaxis


giovedì 15 febbraio 2024

# gst: droplets scoot like caterpillars.

<< From swells in an ocean to ripples in a puddle, the shearing effect of wind blowing over a liquid is visible at all scales. This shear determines the interactions between Earth’s atmosphere and its surface water and, researchers now explain, the movement of liquid droplets that crawl up and down the window of a moving car in the rain. In a series of experiments, (AA) show that airflow triggers surface waves that cause such droplets to crawl like caterpillars before they break apart. >>️

<< At first, the airflow across the droplet’s surface caused the droplet to extend into an oval shape. The droplet also began to tilt, with the liquid piling up at the droplet’s downwind edge. When the drag force exerted by the airflow overcame the capillary force between the glycerin and the glass, the droplet began to slide and to stretch out even more. Surface waves then developed on the elongated droplet and traveled toward its leading edge. The waves induced a stable caterpillar-like motion, with the droplet stretching and contracting along its length. Eventually, beyond a threshold length that depended on the droplet’s volume, the caterpillar was no longer able to withstand the shearing force and broke into several droplets. >>️

AA << say that the behavior follows the same pattern as that of an elongated droplet sliding along an incline. >>
Rachel Berkowitz. Droplets Scoot Like Caterpillars. Physics 16, s110. Sep 1, 2023.

A. Chahine, J. Sebilleau, R. Mathis, D. Legendre. Caterpillar like motion of droplet in a shear flow. Phys. Rev. Fluids 8, 093601. Sep 1, 2023.

Also: drop, bubble, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, bubble, transition


martedì 30 gennaio 2024

# gst: analogy between quasi-2D and 3D liquid drops.

<< Liquid drops are everywhere around us and important in numerous technological applications. Here, (AA) demonstrate a quasi-two-dimensional (Q2D) analogy to the regular, often close to axisymmetric, three-dimensional (3D) drops. >>️

<< The Q2D drops are created by confining liquids between vertical walls, leading to formation of low aspect ratio capillary bridges that are deformed by gravity. When stationary, the Q2D drops adopt projected shapes that are analogous to 3D sessile drops, ranging from circular drops to puddles. >>️

<< When moving, the Q2D drops exhibit capillary and fluid mechanical behaviours analogous to 3D drops, including impacts and sliding on pseudo-surfaces. The Q2D drops also exhibit considerably more complex phenomena such as levitation, instabilities and pattern formation when subjected to external electric, magnetic and flow fields -- all seen also in regular 3D drops. >>️

<< 3D-Q2D analogy suggests that the diverse and often complicated phenomena observed in 3D drops can be studied in the Q2D geometry, >>
Tytti Kärki, Into Pääkkönen, et al. Quasi-Two-Dimensional Drops. arXiv: 2401.11845v1 [physics.flu-dyn]. Jan 22, 2024.

Also: drop, analogy, in https://www.inkgmr.net/kwrds.html

Keywords: gst, drop, droplet, droploid, analogy


venerdì 26 gennaio 2024

# gst: compression and fracture of ordered and disordered droplet rafts

AA << simulate a two-dimensional array of droplets being compressed between two walls. The droplets are adhesive due to an attractive depletion force. As one wall moves toward the other, the droplet array is compressed and eventually induced to rearrange. The rearrangement occurs via a fracture, where depletion bonds are quickly broken between a subset of droplets. >>

<< For monodisperse, hexagonally ordered droplet arrays, this fracture is preceded by a maximum force exerted on the walls, which drops rapidly after the fracture occurs. >>

<< In small droplet arrays a fracture is a single well-defined event, but for larger droplet arrays, competing fractures can be observed. These are fractures nucleated nearly simultaneously in different locations. >>

AA << also study the compression of bidisperse droplet arrays. The addition of a second droplet size further disrupts fracture events, showing differences between ideal crystalline arrays, crystalline arrays with a small number of defects, and fully amorphous arrays. >>
Pablo Eduardo Illing, Jean-Christophe Ono-dit-Biot, et al. Compression and fracture of ordered and disordered droplet rafts. Phys. Rev. E 109, 014610. Jan 17, 2024.

Also: drop, defect, fracture, crack, in https://www.inkgmr.net/kwrds.html

randa (quasi-stochastic poetry) https://inkpi.blogspot.com/search?q=randa

Keywords: gst, drop, droplet, raft, defect, fracture, crack



lunedì 10 luglio 2023

# gst: myriad of complex dynamics from the atomization of acoustically levitated droplets

AA << report the dynamics of a droplet levitated in a single-axis acoustic levitator. The deformation and atomization behavior of the droplet in the acoustic field exhibits a myriad of complex phenomena, in sequences of steps. These include the primary breakup of the droplet through stable levitation, deformation, sheet formation, and equatorial atomization, followed by secondary breakup which could be umbrella breakup, bag breakup, bubble breakup or multistage breakup depending on the initial size of the droplet. >>

<< Both the primary and the secondary breakup of the droplet admit interfacial instabilities such as Faraday instability, Kelvin Helmholtz (KH) instability, RT instability, and RP instability and are well described with visual evidence. >>️

Sunil K. Saroj, Rochish M. Thaokar. Atomisation of an acoustically levitated droplet: Experimental observations of a myriad of complex phenomenon. arXiv: 2307.00400v1 [physics.flu-dyn]. Jul 1, 2023.

Also:  drop, transition, instability in https://www.inkgmr.net/kwrds.html

Keywords: gst, drop, droplet, transition, instability



mercoledì 21 giugno 2023

# gst: nonmonotonic appearance- disappearance behaviors of two unequal-sized miscible liquid drops

<< the coalescence process of two miscible liquid drops exhibits a nonmonotonic behavior of partial coalescence from appearance to disappearance and then reappearance with decreasing surface tension ratio. The strong lifting force of the intense Marangoni flow causes the reappearance of partial coalescence at higher surface tension difference between two drops. When the Ohnesorge number increases, high viscous forces restrict the propagation of Marangoni flow and do not favor the pinch-off, even in the presence of a significant surface tension difference. The generation of secondary drops at a considerable surface tension difference is also prevented for small parent drop size ratio. >>️

Swati Singh, Arun K. Saha. Effect of surface tension gradients on coalescence dynamics of two unequal-sized drops. Phys. Rev. Fluids 8, 053604. May 24, 2023. 

Also:  'drop' in https://www.inkgmr.net/kwrds.html  

Keywords: gst, behavior, drop, drop breakup, drop coalescence, drop interactions, droplet, droploid


mercoledì 14 giugno 2023

# gst: apropos of transitions, droplet trajectories during single and collective bursting bubbles

<< Mechanisms of droplet production from bursting bubbles have been extensively studied for single bubbles, but remain sparsely investigated in more complex collective settings. >>️

<< In the collective bubbling experiment, subsurface quasimonodisperse bubbles are rising up to the surface where, depending on the surfactant concentration, they can either merge or assemble in rafts of monodisperse bubbles. Drop trajectories are recorded, analyzed, and shown to exhibit uniquely distinctive features for the different production mechanisms: centrifuge film drops are ejected sideways, and jet drops are ejected vertically. Different single-burst scalings are finally compared to the experimental size-velocity relationships, and reveal that drops coming from collective bubble bursting appear slower and more scattered than when coming from single bursting bubbles. >>️

B. Neel and L. Deike. Velocity and size quantification of drops in single and collective bursting bubbles experiments. Phys. Rev. Fluids 7, 103603. Oct 5, 2022. 

Also: 'when a superbubble can generate trains of shock waves'. Mar 6, 2019.

Also: 'transition', 'droplet', 'droploid', 'bubble', in: https://www.inkgmr.net/kwrds.html

Keywords: gst, transition, drop, droplet, droploid, bubble, collective dynamics,  fluid dynamics

PS: << they can either merge or assemble in rafts of monodisperse bubbles >> ; this is poetry, without unnecessary adjectives, anzicheforse ... FonT. Wed June 14, 2023 16:58 (cest)


sabato 22 aprile 2023

# gst: when droplets are capable of self-propulsion as if they were surfing on a self-generated wave.


<< active droplets can move autonomously or oscillate between confining walls (..). Those behaviors could provide a clue about how life emerged from inanimate material. >>️

<< in the past decades, it has become clear that weak physical interactions among biomolecules are a crucial part of the answer. Such interactions allow some molecules to stay together transiently while avoiding others, which can lead to the spontaneous formation of droplets whose composition differs from their surroundings. Although biochemist Alexander Oparin suggested such ideas a century ago (..), experimental corroboration arrived only recently >>️

<< The key contribution of Demarchi and his collaborators is to demonstrate that droplet drift can enhance the heterogeneity of substrate and product. The resulting positive feedback allows droplets to move continuously as if they were surfing on a self-generated wave. >>️

David Zwicker. Droplets Come to Life. Physics 16, 45. Mar 20, 2023. 

AA << find that condensates move toward the center of a confining domain when this feedback is weak. Above a feedback threshold, they exhibit self-propulsion, leading to oscillatory dynamics. Moreover, catalysis-driven enzyme fluxes can lead to interrupted coarsening, resulting in equidistant condensate positioning, and to condensate division. >>
Leonardo Demarchi, Andriy Goychuk, et al. Enzyme-Enriched Condensates Show Self-Propulsion, Positioning, and Coexistence. Phys. Rev. Lett. 130, 128401. Mar 20, 2023.

Also

'drop', 'droplet', 'droploid', 'transition' in 

Keywords: gst, drop, droplet, waves, transition, liquid-liquid phase transition, nonequilibrium systems




giovedì 23 febbraio 2023

# gst: hidden complexity during the twinkle of a shrinking droplet


<< Captivating patterns found in the light scattered by an evaporating water droplet could be used to infer the properties of the droplet as it shrinks. >>

AA << collected the light that bounced off a spherical water droplet as the droplet shrunk, which happened naturally as it evaporated. The team observed twinkling patterns called Fano combs, which resemble the outlines of hedgehogs. >>

Ryan Wilkinson. Twinkling of a Shrinking Droplet Reveals Hidden Complexity. Physics 16, s9. Jan 24, 2023.

AA << then fully explain it by expanding the quantum analogy. This turns the droplet into an “optical atom" with angular momentum, tunneling, and excited states. >>

Javier Tello Marmolejo, Adriana Canales, et al. Fano Combs in the Directional Mie Scattering of a Water Droplet. Phys. Rev. Lett. 130, 043804. Jan 24, 2023.

Also

keyword 'evaporation' in FonT

keyword 'drop' | 'droplet' | 'droploids' in FonT



keyword 'goccia' in Notes 
(quasi-stochastic poetry): 


Keywords: gst, drop, droplet, shrink, shrinking droplet, evaporation, transition


mercoledì 15 febbraio 2023

# gst: when a soliton juggles ('catches' and 'throws') droplets


<< Jugglers normally work with solid objects, but a research team has now demonstrated a system that juggles liquid drops. (AA)  have previously shown that liquid drops can bounce in place above the surface of the same liquid—or bounce while moving across the surface—if the container is continuously vibrated (..) In these past experiments, the surface was nearly flat, except for waves generated by the bouncing drop. In the new work by undergraduate student Camila Sandivari of the University of Chile and her colleagues, the vibrations cause the liquid surface to form a large standing wave that actively “catches” and “throws” the drop during each cycle of its oscillation. The trapping of the drop is similar in principle to other types of wave traps, such as laser-based optical tweezers, and the system could potentially lead to new types of traps for larger objects. >>

AA << placed water mixed with a dye and a surface-tension-reducing agent in a 20-cm-long, 2.6-cm-wide basin that supports an unusual type of surface wave when the basin is vibrated in a specific frequency range. In this wave, rather than a series of oscillating peaks and valleys, there is only a single standing wave peak, called a soliton. However, this peak doesn’t oscillate uniformly across the basin’s short dimension (the width). A peak appears at one of the long walls coincident with a valley at the opposite wall, and then the peak and the valley switch places moments later, keeping a relatively flat “node” line along the central long axis of the basin. >>

AA << used a pipette to place a few-millimeter-wide drop of the same fluid just above the oscillating soliton, close to one of the long walls, and found that drops could be juggled for up to 90 minutes. The team attributes this unusual stability in part to a property of the soliton: if the drop wanders off-center, the oscillating surface wave pulls it back toward its center, similar to the way the laser field in optical tweezers is able to stably hold a small particle at its center. >>

David Ehrenstein. Juggling Water Drops. Physics 16, 21. Feb 10, 2023. 
https://physics.aps.org/articles/v16/21

Also

keyword 'drop' | 'droplet' | 'droploids' in FonT




keyword 'goccia' in Notes 
(quasi-stochastic poetry)


keyword 'solitons' in FonT



Keywords: gst, solitons, drop, droplet, droploids, goccia


venerdì 30 dicembre 2022

# gst: apropos of modulational instabilities, the case of vortex-ring quantum droplets in a radially-periodic potential.

FIG. 11: (Color online) Typical examples of stable nested patterns with soliton and vortex QDs (quantum droplets)  which were created in adjacent radial troughs. In panels (a1-b4) the pattern was created from the initial dynamical states with parameters (N,S,On) = (46,0,2) and (N,S,On) = (35,1,1) in the outer and inner troughs, respectively. In panels (c1-d4) the input was taken with parameter sets (N,S,On) = (120,1,3) and (N,S,On) = (46,0,2) in the outer and inner troughs.

AA << establish stability and characteristics of two-dimensional (2D) vortex ring-shaped quantum droplets (QDs) formed by binary Bose-Einstein condensates. >>️

<< another noteworthy option is to construct a two-ring complex in which one vortex-ring component is subject to the MI  (modulational instability), hence it is replaced by an azimuthal soliton (or maybe several solitons), (..), while the vortex component trapped in another potential trough avoids the azimuthal MI and remains essentially axisymmetric. >>️

<< Examples of such heterogeneous robust states, produced by simulations of Eq. (3), are displayed in Fig. 11. Panels 11(a1-b4) show a complex in which the MI takes place in the outer circular trough, producing an azimuthal soliton which performs rotary motion, while the inner vortex ring is  modulationally stable. An opposite example is produced in Figs. 11(c1-d4), where the outer vortex ring remains stable against azimuthal perturbations, while the MI creates a soliton exhibiting the rotary motion in the embedded (inner) circular trough. The rotation direction of the soliton is driven by the vorticity sign of the underlying QD (quantum droplet). It is relevant to mention that the multi-ring potential considered here holds different vortex-ring or azimuthal-soliton states nearly isolating them from each other. (..) An additional problem, which is left for subsequent analysis, is interplay between adjacent radial modes in the case when the separation between the adjacent rings is essentially smaller. >>️

Bin Liu, Yi xi Chen, et al. Vortex-ring quantum droplets in a radially-periodic potential. arXiv: 2212.05838v1 [nlin.PS]. Dec 12, 2022.



Also

keyword 'drop' | 'droplet' | 'droploids' in FonT




keyword 'goccia' in Notes 
(quasi-stochastic poetry): 


keyword 'instability' | 'instabilities' in FonT



keyword 'instabile' in Notes 
(quasi-stochastic poetry)


Keywords: gst, drop, droplet, vortex, vortices, vortexes, vorticity, instability,  modulational instabilities






venerdì 18 novembre 2022

# gst: apropos of transitions, the transition from sticking to slipping.

<< From hydrogels and plastics to liquid crystals, soft solids cover a wide array of synthetic and biological materials that play key enabling roles in advanced technologies >>️

<< Attempts to study the interactions between soft solids and liquids have largely focused on the wetting of soft solids and its resulting deformation at equilibrium or in a quasi-static state. Here, (AA) consider the frequently encountered case of unsteady wetting of a liquid on a soft solid and show that transient deformation of the solid is necessary to understand unsteady wetting behaviours. >>️

AA << find that the initial spreading of the liquid occurs uninterrupted in the absence of solid deformation. This is followed by intermittent spreading, in which transient deformation of the solid at the three-phase contact line (CL) causes the CL motion to alternate alternation between CL sticking and slipping. (They) identify the spreading rate of liquids and the viscoelastic reacting rate of soft solids as the two competing factors in dictating intermittent spreading. (They)  formulate and validate experimentally the conditions required for the contact line to transition from sticking to slipping. By considering the growing deformation of soft solids as dynamic surface heterogeneities, (AA) proposed conditions for stick-slip transition in unsteady wetting on soft solids broaden the classical theory on wetting hysteresis on rigid solids. >>️

Surjyasish Mitra, Quoc Vo, Marcus Lin, Tuan Tran. Unsteady wetting of soft solids. arXiv:2211.07043v1 [cond-mat.soft]. Nov 13, 2022.

Also

keyword 'drop' | 'droplet' | 'droploids' in FonT




keyword 'goccia' in Notes 
(quasi-stochastic poetry) 


Keywords: gst, behav, behaviour, transition, soft solids, drop, droplet, sticking, slipping.


giovedì 1 settembre 2022

# gst: apropos of transitions, evaporating binary microdroplets with phase segregation

<< Phase segregation triggered by selective evaporation can emerge in multicomponent systems, leading to complex physiochemical hydrodynamics. Recently, Li et al. (2018) and Kim & Stone (2018) reported a segregative behavior (i.e., demixing) in an evaporating binary droplet. In this work, by means of experiments and theoretical analysis, (AA) investigate the flow dynamics after the occurrence of the phase segregation. >>

<< First, (AA) experimentally reveal the overall physiochemical hydrodynamics of the evaporation process, including the segregative behavior and the resulting flow structure close to the substrate. By quantifying the evolution of the radial flow, (they) identify three successive life stages of the evaporation process. >>

<< At Stage I, a radially outward flow is observed. It is driven by the Marangoni effect. At the transition to Stage II, the radial flow partially reverses, starting from the contact line. This flow breaks the axial symmetry and remarkably is driven by the segregation itself. Finally at Stage III, the flow decays as the evaporation gradually ceases. At this stage the segregation has grown to the entire droplet, and the flow is again controlled by the Marangoni effect. The resulting Marangoni flow homogenizes the distribution of the entrapped volatile water over the whole droplet. >>️

Yaxing Li, Pengyu Lv, et al. Physiochemical hydrodynamics of the phase segregation in an evaporating binary microdroplet.arXiv:2208.07861v1 [physics.flu-dyn]  Aug 16, 2022.

Marangoni effect


Also

keyword 'drop' | 'droplet' in FonT


Keywords: gst, droplet, transition, evaporation, phase transition, phase segregation, Marangoni flow


sabato 21 maggio 2022

# gst: apropos of transitions, two aspects of intermittency


<< intermittency produces significant probability of rare events that may locally accelerate the collision rates by a large factor in comparison with estimates using typical events. >>

<< Increasing intermittency of turbulence destroys the theory not via stronger bursts, but rather via increase of characteristic sizes of regions of calm and quiescent flow. ([AA️] remind that these two aspects of intermittency go together: increase of regions of calm flow and at the same time increased probability of strong bursts ([8] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, (Cambridge University Press, New York, 1995).). >>

Itzhak Fouxon, Seulgi Lee, Changhoon Lee. Intermittency and collisions of fast sedimenting droplets in turbulence.  arXiv:2205.06972v1 [physics.flu-dyn]. May 14, 2022. 


Also

keyword 'intermittency' in FonT


keyword 'intermittenza|e' | 'intermittente|i' in Notes (quasi-stochastic poetry)





Keywords: gst, intermittency, collision, drop, droplet, turbulence


mercoledì 20 aprile 2022

# life: apropos of transitions, a leap from chemistry to biology, the hypothesis of self-assembling droplets, the 'droplet world'.


AA << identify conditions suitable for concurrent peptide generation and self-assembly, and (..) show how a proliferating peptide-based droplet could be created by using synthesised amino acid thioesters as prebiotic monomers. Oligopeptides generated from the monomers spontaneously formed droplets through liquid–liquid phase separation in water. The droplets underwent a steady growth–division cycle by periodic addition of monomers through autocatalytic self-reproduction. Heterogeneous enrichment of RNA and lipids within droplets enabled RNA to protect the droplet from dissolution by lipids. >>

Matsuo, M., Kurihara, K. Proliferating coacervate droplets as the missing link between chemistry and biology in the origins of life. Nat Commun 12, 5487. doi: 10.1038/ s41467-021-25530-6. Sep 24,  2021.


<< By constructing peptide droplets that proliferate with feeding on novel amino acid derivatives, we have experimentally elucidated the long-standing mystery of how prebiotic ancestors were able to proliferate and survive by selectively concentrating prebiotic chemicals, (..) Rather than an RNA world, we found that 'droplet world' may be a more accurate description, as our results suggest that droplets became evolvable molecular aggregates—one of which became our common ancestor. >> Muneyuki Matsuo.

Answering a century-old question on the origins of life. Hiroshima University. Sep 27, 2021. 


Also

keyword 'drop' | 'droplet' in FonT



keyword 'transition' in FonT


keyword 'transizione' in Notes (quasi-stochastic poetry): 


keywords: life, originsoflife, transitions, drop, droplet







giovedì 17 marzo 2022

# gst: apropos of weird transitions: from non-equilibrium conditions square droplets and liquid lattices can emerge.


<< Spontaneous emergence of organized states in materials driven by non-equilibrium conditions is of notable fundamental and technological interest. In many cases, the states are complex, and their emergence is challenging to predict. Here, (AA) show that an unexpectedly diverse collection of dissipative organized states emerges in a simple system of two liquids under planar confinement when driven by electrohydrodynamic shearing.

At low shearing, a symmetry breaking at the liquid-liquid interface leads to a one-dimensional corrugation pattern. 

At slightly stronger shearing, topological changes give raise to the emergence of Quincke rolling filaments, filament networks, and two-dimensional bicontinuous fluidic lattices. 

At strong shearing, the system transitions into dissipating polygonal, toroidal, and active droplets that form dilute gas-like states at low densities and complex active emulsions at higher densities. >>

Geet Raju, Nikos Kyriakopoulos, Jaakko V. I. Timonen. Diversity of non-equilibrium patterns and emergence of activity in confined electrohydrodynamically driven liquids. Science  Advances. Vol 7, Issue 38. doi: 10.1126/ sciadv.abh1642. 15 Sep 15, 2021.


<< Things in equilibrium tend to be quite boring, (..) It's fascinating to drive systems out of equilibrium and see if the non-equilibrium structures can be controlled or be useful. Biological life itself is a good example of truly complex behavior in a bunch of molecules that are out of thermodynamic equilibrium. >>  Jaakko Timonen.

Physicists make square droplets and liquid lattices. Aalto University. Sep 15, 2021. 


Also

keyword 'drop' | 'droplet' in FonT



keyword 'goccia' in Notes (quasi-stochastic poetry): 


keywords: gst, drop, droplet, lattice, transition, out of equilibrium.



venerdì 4 febbraio 2022

# gst: apropos of apparent erratic dynamics, the self-organization of drops bouncing on a vertically-vibrated surface

<< A drop bouncing on a vertically-vibrated surface may self-propel forward by Faraday waves and travels along a fluid interface. >>

<< A fine anal­ysis of the pairwise density function shows that while being dynamic, time-evolving and presenting many in­dications of a good mixing in the phase space, the sys­tem adopts in average preferred distances which origin has been rationalized by analysing the internal symme­try of the waves. Thus (AA) have shed light numerically on a statistical many-body wave self-organisation in an apparent erratic dynamics. >>

Adrien Hélias, Matthieu Labousse. Statistical self-organization of walking drops. arXiv:2201.07689v1 [cond-mat.soft]. Jan 19, 2022.


Also

keywords: gst, drops, self-organization, erratic dynamics, erraticity