Translate

venerdì 30 agosto 2024

# gst: apropos of 'filamentous' and 'fibrous' scenarios, criticality enhances the reinforcement of disordered networks by rigid inclusions.


<< The mechanical properties of biological materials are spatially heterogeneous. Typical tissues are made up of a spanning fibrous extracellular matrix in which various inclusions, such as living cells, are embedded. >>️

<< Recent work has shown that, in isolation, such networks exhibit unusual viscoelastic behavior indicative of an underlying mechanical phase transition controlled by network connectivity and strain. How this behavior is modified when inclusions are present is unclear. >>

AA << present a theoretical and computational study of the influence of rigid inclusions on the mechanics of disordered elastic networks near the connectivity-controlled central force rigidity transition. >>️

<< Combining scaling theory and coarse-grained simulations, (AA) predict and confirm an anomalously strong dependence of the composite stiffness on inclusion volume fraction, beyond that seen in ordinary composites. (..) this enhancement is a consequence of the interplay between inter-particle spacing and an emergent correlation length, leading to an effective finite-size scaling imposed by the presence of inclusions. >>

AA << show that this enhancement is a consequence of the interplay between inter-particle spacing and an emergent correlation length, leading to an effective finite-size scaling imposed by the presence of inclusions. >>️

AA << discuss potential experimental tests and implications for (their)  predictions in real systems. >>
Jordan L. Shivers, Jingchen Feng, Fred C. MacKintosh. Criticality enhances the reinforcement of disordered networks by rigid inclusions. arXiv:  2407.19563v1 [cond-mat.soft]. Jul 28, 2024. 

Also: network, transition, disorder, elastic, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, network, transition, disorder, elasticity, rigidity, criticality, bifurcations


mercoledì 28 agosto 2024

# gst: dynamics of small droplets in turbulent multiphase flows


AA << show unambiguously that the formation of small droplets is governed by the internal dynamics which occurs during the breakup of large drops and that the high vorticity and the extreme dissipation associated to these events are the consequence and not the cause of the breakup. >>️

M. Crialesi-Esposito, G. Boffetta, L. Brandt, et al. How small droplets form in turbulent multiphase flows. Phys. Rev. Fluids 9, L072301. Jul 29, 2024. 

Also: drop, bubble, transition, turbulence, intermittency, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid,  bubble, transition, turbulence, intermittency


lunedì 26 agosto 2024

# gst: distance to criticality in unknown noise

<< real-world systems are often corrupted by unknown levels of noise that can distort (..) temporal signatures. Here (AA) aim to develop noise-robust indicators of the distance to criticality (DTC) for systems affected by dynamical noise in two cases: when the noise amplitude is either fixed or is unknown and variable across recordings. >>️

<< in the variable-noise setting, where (..) conventional indicators perform poorly, (AA) highlight new types of high-performing time-series features and show that their success is accomplished by capturing the shape of the invariant density (which depends on both the DTC and the noise amplitude) relative to the spread of fast fluctuations (which depends on the noise amplitude). (AA) introduce a new high-performing time-series statistic, the rescaled autodensity (RAD). >>️

Brendan Harris, Leonardo L. Gollo, Ben D. Fulcher. Tracking the Distance to Criticality in Systems with Unknown Noise. Phys. Rev. X 14, 031021. Aug 8, 2024.

Also: noise, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, criticality, bifurcation, noise, transition


sabato 24 agosto 2024

# gst: existence of hidden metastable states, bifurcations of inflating balloons and interacting hysterons.


AA << consider a system of connected rubber balloons that can be described by a Preisach model of noninteracting hysterons under pressure control but for which the hysterons become coupled under volume control. >>

<< Changes in the transition graphs turn out to be related to changes in the topology of the configuration space of the balloons, providing a particularly geometric view of how transition graphs can be designed, as well as additional information on the existence of hidden metastable states. This class of systems is more general than just balloons. >>️

Gentian Muhaxheri and Christian D. Santangelo. Bifurcations of inflating balloons and interacting hysterons. Phys. Rev. E 110, 024209. Aug 16, 2024.

Also: transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, balloons, bifurcations, hysteresis, hysterons, transition


giovedì 22 agosto 2024

# gst: spontaneous bouncing, trampolining, and hovering behaviors of a levitating water droplet without constraints.


<< The levitating Leidenfrost (LF) state of a droplet on a heated substrate is often accompanied by fascinating behaviors such as star-shaped deformations, self-propulsion, bouncing, and trampolining. These behaviors arise due to the vapor flow instabilities at the liquid-vapor interface beneath the droplet at sizes typically comparable to the capillary length scale of the liquid. >>

AA << report on the spontaneous bouncing, trampolining, and hovering behavior of an unconstrained LF water droplet. (..) the water droplet exhibits an increase in bouncing height at specific radii with intermittent reduction in the height of bounce leading to a quiescent LF state. The reemergence of the trampolining behavior from the quiescent hovering state without any external forcing is observed at sizes as low as 0.1 times the capillary length. (AA) attribute the droplet bouncing behavior to the dynamics of vapor flow beneath the LF droplet. >>

AA << propose that the trampolining behavior of the droplet at specific radii is triggered by harmonic and subharmonic resonance between the natural frequency of the vapor layer and Rayleigh frequency of the droplet. This proposed mechanism of resonance-driven trampolining of LF droplets is observed to be applicable for different liquids irrespective of the initial volume and substrate temperatures, thus indicating a universality of the behavior. (AA) attribute the intermittent trampolining events to the change in the natural frequency of the droplet and the vapor layer due to evaporative mass loss. >>

Pranjal Agrawal, Susmita Dash. Reemergence of Trampolining in a Leidenfrost Droplet. arXiv: 2408.02335v1 [physics.flu-dyn]. Aug 5, 2024. 


Keywords: gst, drop, droplet, droploid, behav, behaviour


lunedì 19 agosto 2024

# gst: apropos of 'normal' (jazzy?) codes, bacteria encode hidden, free-floating genes outside their genome.

AA << show that bacteria break that rule and can create free-floating and ephemeral genes, raising the possibility that similar genes exist outside of our own genome. >>️

<< What this discovery upends is the notion that the chromosome has the complete set of instructions that cells use to produce proteins, (..) We now know that, at least in bacteria, there can be other instructions not preserved in the genome that are nonetheless essential for cell survival. (..) The DNA molecule is a fully functioning, free-floating, transient gene. >> Samuel Sternberg. 

Bacteria Encode Hidden Genes Outside Their Genome—Do We? Columbia University Irving Medical Center. Aug 8, 2024. 

Stephen Tang, Valentin Conte, et al. De novo gene synthesis by an antiviral reverse transcriptase. Science. doi: 10.1126/ science.adq0876. Aug 8, 2024. 

Also

Keywords: gst, codes, dna, rna, crispr, normal, jazz


sabato 17 agosto 2024

# gst: networks of pendula with diffusive interactions, chaotic regime seems to emerge at low energies.

AA << study a system of coupled pendula with diffusive interactions, which could depend both on positions and on momenta. The coupling structure is defined by an undirected network, while the dynamic equations are derived from a Hamiltonian; as such, the energy is conserved. >>️

<< The behaviour observed showcases a mechanism for the appearance of chaotic oscillations in conservative systems. For Hamiltonians with two degrees of freedom, it has been shown how chaos can emerge near a saddle-centre equilibrium possessing a homoclinic orbit. (AA) have seen that higher-dimensional systems having mixed equilibria, i.e., generalisations of a saddle-center where the eigenvalues are only imaginary and reals, also show chaotic behaviour close to those points.  >>️

AA << complement the analysis with some numerical simulations showing the interplay between bifurcations of the origin and transitions to chaos of nearby orbits. A key feature is that the observed chaotic regime emerges at low energies. >>
Riccardo Bonetto, Hildeberto Jardón-Kojakhmetov, Christian Kuehn. Networks of Pendula with Diffusive Interactions. arXiv: 2408.02352v1 [math.DS]. Aug 5, 2024.

Also: pendulum, network, transition, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, pendulum, network, transition, chaos, bifurcation


martedì 13 agosto 2024

# gst: emergent chirality in active rotation even with spontaneous chiral symmetry breaking.




<< Collective cell dynamics play a crucial role in many developmental and physiological contexts. While two-dimensional (2D) cell migration has been widely studied, how three-dimensional (3D) geometry and topology interplay with collective cell behavior to determine dynamics and functions remains an open question. >>️

<< Using murine pancreas-derived organoids as a model system, (AA) find that epithelial spheres exhibit persistent rotation, rotational axis drift, and rotation arrest. Using a 3D vertex model, (they) demonstrate how the combined action of traction force and polarity alignment can account for these distinct rotational dynamics near a solid to flow transition. Furthermore, (their) analysis shows that the spherical tissue rotates as an active solid occasionally switching to a flowing state and exhibits spontaneous chiral symmetry breaking. >>️

Tzer Han Tan, Aboutaleb Amiri, et al. Emergent chirality in active solid rotation of pancreas spheres. PRX Life 2, 033006. Aug 8, 2024.

AA << say their work shows how symmetry-breaking processes in living active matter can be induced by the interplay of geometry, topology, and collective dynamics. >>️

Charles Day. Emergent Chirality in Active Rotation. Physics 17, s102. Aug 8, 2024. 

Also: chiral, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, transition, chiral, chiral symmetry breaking 


lunedì 12 agosto 2024

# gst: tracking criticality in unknown noise

<< Many real-world systems undergo abrupt changes in dynamics as they move across critical points, often with dramatic and irreversible consequences. >>️

AA << aim to develop noise-robust indicators of the distance to criticality (DTC) for systems affected by dynamical noise in two cases: when the noise amplitude is either fixed or is unknown and variable across recordings. (They) present a highly comparative approach to this problem that compares the ability of over 7000 candidate time-series features to track the DTC in the vicinity of a supercritical Hopf bifurcation. >>️

<< in the variable-noise setting, where these conventional indicators perform poorly, (AA) highlight new types of high-performing time-series features and show that their success is accomplished by capturing the shape of the invariant density (which depends on both the DTC and the noise amplitude) relative to the spread of fast fluctuations (which depends on the noise amplitude). >>

AA << introduce a new high-performing time-series statistic, the rescaled autodensity (RAD), that combines these two algorithmic components. >>️
Brendan Harris, Leonardo L. Gollo, Ben D. Fulcher. Tracking the Distance to Criticality in Systems with Unknown Noise. Phys. Rev. X 14, 031021. Aug 8, 2024.

Also: noise, brain, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, noise, brain, mouse visual cortex


sabato 10 agosto 2024

# ai-bot: Cybloids − Creation and Control of Cybernetic Colloids.

FIG. 11. Particle clusters formed for different parameters of the feedback potential.

AA << present an idea to create particles with freely selectable properties. The properties might depend, for example, on the presence of other particles (hence mimicking specific pair or many-body interactions), previous configurations (hence introducing some memory or feedback), or a directional bias (hence changing the dynamics). Without directly interfering with the sample, each particle is fully controlled and can receive external commands through a predefined algorithm that can take into account any input parameters. This is realized with computer-controlled colloids, which (AA) term cybloids - short for cybernetic colloids. >>

<< For a single particle, this programming can cause subdiffusive behavior or lend activity. For many colloids, the programmed interaction potential allows to select a crystal structure at wish. Beyond these examples, (AA) discuss further opportunities which cybloids offer. >>️

Debasish Saha, Sonja Tarama, et al. Cybloids − Creation and Control of Cybernetic Colloids. arXiv: 2408.00336v1 [cond-mat.soft]. 

Also: ai (artificial intell), bot, colloids, in https://www.inkgmr.net/kwrds.html 

Keywords: AI, Artificial Intell, BOT, AI-BOT, colloids, cybernetic colloids, cybloids


giovedì 8 agosto 2024

# gst: when a continuous attractor could survive seemingly destructive bifurcations

<< Continuous attractors offer a unique class of solutions for storing continuous-valued variables in recurrent system states for indefinitely long time intervals. Unfortunately, continuous attractors suffer from severe structural instability in general--they are destroyed by most infinitesimal changes of the dynamical law that defines them. >>️

AA << build on the persistent manifold theory to explain the commonalities between bifurcations from and approximations of continuous attractors. Fast-slow decomposition analysis uncovers the persistent manifold that survives the seemingly destructive bifurcation. Moreover, recurrent neural networks trained on analog memory tasks display approximate continuous attractors with predicted slow manifold structures. >>️

<< continuous attractors are functionally robust and remain useful as a universal analogy for understanding analog memory. >>

Ábel Ságodi, Guillermo Martín-Sánchez, Piotr Sokół, Il Memming Park. Back to the Continuous Attractor. arXiv: 2408.00109v1 [q-bio.NC]. Jul 31, 2024. 

Also: attractor, analogy, brain, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, attractor, continuous attractor, analogy, brain


lunedì 5 agosto 2024

# gst: evolution of turbulence using a random jet array

AA << perform a series of laboratory experiments in which (They) alter the parameters of the randomized algorithm, along with the jet spacing and outlet velocity of the jets. (They) first determine the location where turbulence transitions to a fully developed state and show that it is a function of jet penetration length, ℒ𝒥, and effective jet spacing, 𝑆𝑒. (AA)  identify three distinct regions for the spatial decay of turbulence in RJA (Random Jet Array) facilities and notably, (They) find different decay rates, unlike previous studies that report only one spatial decay rate using similar facilities. These regions are shown to depend on the variations of input parameters yet independent of the strength of the mean flow. (AA) also find the strength of the mean flow does not affect the homogeneity, nor the production, transport, or advection terms of the turbulent kinetic energy budget equation. >>

Finally, AA << address a longstanding question toward estimating turbulence metrics with an RJA based on the input parameters. >>
Arefe Ghazi Nezami, Blair Anne Johnson. Evolution of turbulence using a random jet array. Phys. Rev. Fluids 9, 074610. Jul 26, 2024.

Also: turbulence, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence


sabato 3 agosto 2024

# behav: swarms and hybrids, an approach to create and control collective motions (on demand)

AA << demonstrate that it is possible to generate coordinated structures in collective behavior at desired moments with intended global patterns by fine-tuning an inter-agent interaction rule. (Their) strategy employs deep neural networks, obeying the laws of dynamics, to find interaction rules that command desired collective structures. The decomposition of interaction rules into distancing and aligning forces, expressed by polynomial series, facilitates the training of neural networks to propose desired interaction models. Presented examples include altering the mean radius and size of clusters in vortical swarms, timing of transitions from random to ordered states, and continuously shifting between typical modes of collective motions. This strategy can even be leveraged to superimpose collective modes, resulting in hitherto unexplored but highly practical hybrid collective patterns, such as protective security formations. >>

Dongjo Kim, Jeongsu Lee, Ho-Young Kim. Navigating the swarm: Deep neural networks command emergent behaviours. arXiv: 2407.11330v1 [cs.NE]. Jul 16, 2024.️

Also: swarm, flockbehav, AI (artificial intell), in https://www.inkgmr.net/kwrds.html 

Keywords: behav, swarm, flock, AI, artificial intelligence 


giovedì 1 agosto 2024

# game: hypothesis of a geometric design of chaotic attractors, on demand


AA << propose a method using reservoir computing to generate chaos with a desired shape by providing a periodic orbit as a template, called a skeleton. (They) exploit a bifurcation of the reservoir to intentionally induce unsuccessful training of the skeleton, revealing inherent chaos. The emergence of this untrained attractor, resulting from the interaction between the skeleton and the reservoir's intrinsic dynamics, offers a novel semi-supervised framework for designing chaos. >>️

Tempei Kabayama, Yasuo Kuniyoshi, et al. Designing Chaotic Attractors: A Semi-supervised Approach. arXiv: 2407.09545v1 [cs.NE]. Jun 27, 2024.

Also: game, chaos in https://www.inkgmr.net/kwrds.html 

Keywords: game, chaos, chaotic attractors