Translate

Visualizzazione dei post in ordine di pertinenza per la query bubble. Ordina per data Mostra tutti i post
Visualizzazione dei post in ordine di pertinenza per la query bubble. Ordina per data Mostra tutti i post

sabato 8 maggio 2021

# gst: apropos of bubbles, the life of a surface bubble.

<< Who has never observed at the surface of a puddle under the rain one bubble that bursts instantly and another one that stays for more than 10 s?  >>️

<< Once a bubble has reached an interface, it adopts a static shape that is governed by the balance between the surface tension and buoyancy effects.  >>

<< To sum-up, (AA) have presented the state of the art concerning the prediction of the lifetime of surface bubbles. In general, the bubble unstability is linked to two facts: (i) the bubble cap is constituted by a thin film, whose thickness decreases along time due to both drainage and evaporation and (ii) this thin film is unstable and eventually bursts. (AA) have shown that the current understanding is that two different behaviors exist depending on whether the film thins until its thickness reaches a few hundreds of nanometers or bursts at higher thicknesses. In the first case, determinist models that describe the thinning of the film down to a rupture thickness of the order of tenth to hundreds of nanometers perform correctely to calculate the bubbles lifetime. In the second case, the presence of a fatal impurity within the film and its propension to break it being a more random process, lifetime distributions are much more spread and only stochastic models may capture the physical mechanism(s) at play. The scenario depends on whether or not surfactants are present to stabilise the thick film. >>

<< In absence of surfactants, the distribution of lifetimes is given by a Weibull distribution. The bursting mechanism available in the literature involves the diffusion of impurities in the film, which cause the film rupture. Film thinning due to evaporation is likely to be rather negligible in such experiments since its impact is small on thick films. >>

<< In presence of surfactants, the film is expected to thin until its thickness reaches a few tens of nanometers. The prediction of the bubble lifetime thus depends on our ability to predict the thinning rate of the film. It is fixed by the evaporation and the drainage. For tiny bubbles, no stable thin film appears and the evaporation is negligible. The lifetime is fixed by the approach velocity of the bubble to the bath. For bigger bubbles, evaporation and drainage must be taken into account. The evaporation is a constant rate, which depends on external conditions such as atmospheric humidity, on the diffusion/convection ratio and on the chemical potential of the solution. It has been shown that an accurate description of the evaporation rates necessitates to take into account the natural convection. >>

<< The drainage mechanism depends on the viscosity of the solution, on the bubble size and on the surfactants used to stabilise the interfaces. (AA) have identified three main mechanisms. For viscous bubbles, the cap is axisymmetric and the thickness decreases continuously from the bottom to the top of the bubble. The drainage is then expected to be exponential with time. In presence of surfactants, a pinch is expected to appear in the vicinity of the meniscus, which slows down the drainage. The destabilization of this pinch may lead to marginal regeneration, that in turn can affect the drainage. >>

<< Several references show that the drainage and evaporation rates are sufficient to predict the average lifetime of the surfaces bubbles in these different cases. >>

<< Many questions remain open and deserve to be addressed in a near future and (AA) try to list some of them below.
The mechanism at the origin of the eventual bursting of the film, whether they are thick (micrometers) or thin (tens of nanometers) is mostly unknown.
The marginal regeneration phenomenon, the dynamics of the pinch, the origin of its destabilisation and its contribution to drainage are under current investigation.
The impact of the chosen surfactants on bubble drainage and evaporation is crucial but remains an open question.
There is still a lack of data concerning the distributions observed. Additionally, there is no theoretical prediction of the distribution in the presence of surfactants stabilising the interface. >>️

Jonas Miguet, Florence Rouyer,  Emmanuelle Rio. The Life of a Surface Bubble. Molecules. 26(5): 1317.
doi: 10.3390/ molecules26051317. Mar 1,  2021. 


Also

keyword "bubble" in FonT




giovedì 17 febbraio 2022

# gst: approaching the dynamics of nanobubble formation and collapse


<< While sequential optical imaging (i.e., recording movies) has contributed significantly to our understanding of cavitation and other complex bubble behavior at the larger (..) scale, the necessary length and temporal resolutions make such a traditional approach infeasible for nanobubbles, >> Garth Egan. ️

<< To take the images at the nanoscale, (AA) shot a 532-nanometer laser pulse (about 12 nanosec) to excite gold nanoparticles inside a 1.2 micron layer of water. The resulting bubbles were observed with a series of nine electron pulses (10 ns) separated by as little as 40 ns peak-to-peak. The researchers found that isolated nanobubbles were observed to collapse in less than 50 ns, while larger (∼2–3 micron) bubbles were observed to grow and collapse in less than 200 ns. >>

<< Isolated bubbles were observed to behave consistently with models derived from data from much larger bubbles. The formation and collapse were observed to be temporally asymmetric, which has implications for how results from alternate methods of experimental analysis are interpreted. More complex interactions between adjacent bubbles also were observed, which led to bubbles living longer than expected and rebounding upon collapse. >>️️

Anne M. Stark. Multiframe imaging of micron and nanoscale bubble dynamics.  Lawrence Livermore National Laboratory. Feb 09, 2022. 


Garth C. Egan, Edmond Y. Lau, Eric Schwegler.  Multiframe Imaging of Micron and Nanoscale Bubble Dynamics. Nano Lett. 2022, 22, 3, 1053–1058. doi: 10.1021/ acs.nanolett.1c04101. Jan 19, 2022.


Also

keyword "bubble" in FonT


keyword "bolla" | "bolle" in Notes (quasistochastic-poetry): 



keywords: bubble, nano, nanobubble,  nanobubble dynamics, bubble formation, bubble collapse




sabato 20 aprile 2024

# gst: apropos of synchronization of large bubble clouds, self-oscillating acoustic bubbles that bounce

<< Self-oscillations underlie many natural phenomena such as heartbeat, ocean waves, and the pulsation of variable stars. (..) In this study, (AA) consider two closely spaced bubbles pulsating in the kHz range in response to ultrasonic excitation. A translational bouncing motion emerges from their interaction with a much lower frequency than the bubble pulsation frequency. >>

Their analysis << reveals that the observed bubble bouncing exhibits the main features of self-oscillation, such as negative damping and the emergence of a limit cycle. These results highlight unexpected nonlinear effects in the field of microbubbles and give insights into the understanding of synchronization in large bubble clouds. >>️

Gabriel Regnault, Alexander A Doinikov, et al. Phenomenon of self-oscillation in bubble dynamics: Bouncing acoustic bubbles. arXiv: 2404.05822v1 [physics.flu-dyn]. Apr 8, 2024.

Also: bubble, bouncing, behav, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, self-oscillation, bouncing, behavior, collective behavior, bouncing motion, synchronization


venerdì 14 aprile 2023

# gst: even a single bubble can produce creative musical outcomes


<< Producing original and arranging existing musical outcomes is an art that takes years of learning and practice to master. Yet, despite the constant advances in the field of AI-powered musical creativity, production of quality musical outcomes remains a prerogative of the humans. Here we demonstrate that a single bubble in water can be used to produce creative musical outcomes, when it nonlinearly oscillates under an acoustic pressure signal that encodes a piece of classical music. >>️

Ivan S. Maksymov. Musical creativity enabled by nonlinear oscillations of a bubble in water. arXiv:2304.00822v1 [cs.SD]. Apr 3, 2023. 

keyword "bubble" in FonT

Keywords: gst, ai, fluid dynamics, bubble, sound, music, audio processing



martedì 29 dicembre 2020

# gst: complex flow patterns generated by swarms of bubbles

<< When swarms of bubbles are driven upwards through a fluid by their buoyancy, they can generate complex flow patterns in their wake. Named 'pseudo-turbulence,' these patterns are characterized by a universal mathematical relationship between the energy of flows of different sizes, and the frequency of their occurrence. This relationship has now been widely observed through 3-D simulations, but it is less clear whether it would still hold for 2-D swarms of bubbles. >>

AA << show that in 2-D simulated fluids, this pattern changes within larger-scale flows in less viscous fluids. (..) In the past, many studies of pseudo-turbulence have found the statistical properties of 3-D bubble swarms remain universal over a wide range of bubble surface tensions, fluid viscosities, and density ratios between bubbles and fluids. In 2-D fluids, however, an effect named an 'inverse energy cascade' enables energy to be transferred from small- to large-scale flows. >>

Characterising complex flows in 2-D bubble swarms. Springer. Dec 4, 2020



Rashmi Ramadugu, Vikash Pandey, Prasad Perlekar. Pseudo-turbulence in two-dimensional buoyancy-driven bubbly flows: A DNS study. The European Physical Journal E. V 43, no. 73. doi: 10.1140/ epje/i2020-11997-0. Nov 25, 2020.


Also

keyword 'bubble' in FonT





lunedì 12 settembre 2022

# gst: a backflipping behavior of air bubbles when they collide with a tilted surface

AA << observe that air bubbles exhibit a backflipping behavior when they collide with a tilted surface. >>

<< Particle image velocimetry reveals that the backflipping behavior is caused by wake-induced circulation around the bubble, which applies a lift force on the bubble. >>

<< The theoretical results are in good agreement with the experiments confirming the key role of the wake-induced lift force in backflipping. >>

Alireza Hooshanginejad, Anuj Baskota, Sunghwan Jung. Backflipping motion of air bubbles colliding with a tilted wall. arXiv: 2208.14486v1 [physics.flu-dyn]. Aug 30, 2022.
Also

keyword "bubble" in FonT

keyword "bolla" | "bolle" in Notes (quasistochastic-poetry)

Keywords: gst, bubble, behavior, backflipping behavior, oblique collisions






lunedì 9 gennaio 2023

# gst: apropos of instability, bubbles may have unexpected chills

<< Bubbles are ubiquitous, existing in everything from the foam on a beer to party toys for children. Despite this pervasiveness, there are open questions on the behavior of bubbles, such as why some bubbles are more resistant to bursting than others. >>️

AA << created a soap bubble from a mixture made of dishwashing liquid, water, and glycerol. They then measured the soap film’s temperature under a variety of environmental conditions. They found that the film could be up to 8 °C colder than the surrounding air. They also found that glycerol content of the soap film impacted this temperature difference, with films containing more glycerol having higher temperatures. Boulogne (Francois Boulogne) says that such a large temperature difference could impact bubble stability.  >>️

Anna Napolitano. Bubbles Have an Unexpected Chill. Physics 15, s173. Dec 19, 2022. 

Francois Boulogne, Frederic Restagno, Emmanuelle Rio. Measurement of the Temperature Decrease in Evaporating Soap Films. Phys. Rev. Lett. 129, 268001. Dec 19, 2022.

Also

keyword "bubble" in FonT


keyword "bolla" | "bolle" in Notes (quasistochastic-poetry): 



Keywords: gst, bubble, stability, evaporation, burst





lunedì 16 gennaio 2023

# gst: diffusivity of ordered and freely evolving bubbly suspensions.

AA << investigate the dispersion of a passive scalar such as the concentration of a chemical species, or temperature, in homogeneous bubbly suspensions, by determining an effective diffusivity tensor. Defining the longitudinal and transverse components of this tensor with respect to the direction of averaged bubble rise velocity in a zero mixture velocity frame of reference, (AA) focus on the convective contribution thereof, this being expected to be dominant in commonly encountered bubbly flows. >>

<< In the limits of low and of high Péclet number, including inertial effect of the flow does not affect the scaling of the effective diffusivity with respect to the Péclet number. These results are confirmed by direct numerical simulations performed in different flow regimes, for spherical or very deformed bubbles and from vanishingly small to moderate values of the Reynolds number. Scalar transport in arrays of freely rising bubbles is considered by us subsequently, using numerical simulations. In this case, the dispersion is found to be convectively enhanced at low Péclet number, like in ordered arrays. At high Péclet number, the Taylor dispersion scaling obtained for ordered configurations is replaced by the one characterizing a purely mechanical dispersion, like in random media, even if the level of disorder is very low. >>️

Aurore Loisy, Aurore Naso, Peter D. M. Spelt. The effective diffusivity of ordered and freely evolving bubbly suspensions. arXiv:2301.00028v1 [physics.flu-dyn]. Dec 30, 2022. 

Also

keyword "bubble" in FonT


keyword "bolla" | "bolle" in Notes (quasistochastic-poetry): 



Keywords: gst, bubble, bubbly suspensions, diffusion, fluctuation




sabato 9 dicembre 2023

# gst: buckling instability of sticky bubbles.


<< A slender object undergoing an axial compression will buckle to alleviate the stress. Typically the morphology of the deformed object depends on the bending stiffness for solids, or the viscoelastic properties for liquid threads. >>️

AA << study a chain of uniform sticky air bubbles in an aqueous bath that rise due to buoyancy. A buckling instability of the bubble chain, with a characteristic wavelength, is observed in the absence of a bending stiffness. If a chain of bubbles is produced faster than it is able to rise, the dominance of viscous drag over buoyancy results in a compressive stress that is alleviated by buckling the bubble chain. >>
Carmen L. Lee, Kari Dalnoki-Veress. Buckling instability in a chain of sticky bubbles. arXiv: 2311.15452v1 [cond-mat.soft]. Nov 26, 2023.

Also: bubble, instability, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, instability, buckling instability


venerdì 19 novembre 2021

# gst: apropos of oscillations, viscous streaming around an immersed microfeature (e.g. a bubble)

<< Viscous streaming refers to the rectified, steady flows that emerge when a liquid oscillates around an immersed microfeature, typically a solid body or a bubble. The ability of such features to locally concentrate stresses produces strong inertial effects to which both fluid and immersed particles respond within short length (O(100) microns) and time (milliseconds) scales, rendering viscous streaming arguably the most efficient mechanism to exploit inertia at the microscale. >>️

(AA) << demonstrate that a multi-curvature approach in viscous streaming dramatically extends the range of accessible flow topologies. (They) show that numerically predicted, but never experimentally observed, streaming flows can be physically reproduced, computationally engineered, and in turn used to enhance particle manipulation, filtering and separation in compact, robust, tunable and inexpensive devices. >>️

Yashraj Bhosale, Giridar Vishwanathan, et al. Multi-curvature viscous streaming: flow topology and particle manipulation. arXiv: 2111.07184v1 [physics.flu-dyn]. Nov 13, 2021.


keywords: gst, viscosity, viscous streaming, bubble, oscillations, liquid oscillations, flanking vortex, particle manipulation 

mercoledì 19 agosto 2020

# gst: the role of surface tension during the collapse of a viscous bubble

<< The rupture and collapse of viscous bubbles are widespread in nature and in industrial applications. The phenomenon is accompanied by elastic sheets that develop radial wrinkles. While the weight of the film appeared to play a dominant role during film collapse and wrinkling instability, in this work, gravity appeared to play a surprisingly negligible role. Based on fluid mechanics of the phenomena, Oratis et al. showed surface tension to be the driving factor during collapse to initiate dynamic buckling instability and wrinkling behavior, accompanied with the breakdown of curved viscous and viscoelastic films. >>

Thamarasee Jeewandara. Ripple effects after slow-motion bubble collapse. Aug 17, 2020.


Alexandros T. Oratis, John W. M. Bush, et al. A new wrinkle on liquid sheets: Turning the mechanism of viscous bubble collapse upside down. Science. Vol. 369, Issue 6504, pp. 685-688. doi: 10.1126/ science.aba0593. Aug 7, 2020





mercoledì 28 agosto 2019

# gst: the creation of giant bubbles is underappreciated in sci res

<< In the pantheon of scientific achievement, the creation of giant soap bubbles is sadly underappreciated. >>

<< "How are such large films created, and how do they remain stable?" ask Frazier (Stephen Frazier) and co. >>

The chemistry behind how you make a record-breaking giant soap bubble.
The art of creating giant bubbles is more mysterious than it seems, but researchers are at last teasing apart the chemistry of thin soapy films. Emerging Technology from the arXiv.  Aug 24, 2019.  
https://www.technologyreview.com/s/614181/the-chemistry-behind-how-you-make-a-record-breaking-giant-soap-bubble/      

https://twitter.com/techreview/status/1166167505246871552

Stephen Frazier, Xinyi Jiang, Justin C. Burton. How to make a giant bubble.
arXiv:1908.00537v1 [physics.flu-dyn] Aug 1, 2019. 

https://arxiv.org/abs/1908.00537

FonT

a proposito di generica "creation of giant bubbles", una entita' AI, anche di "media forza", opportunamente orientata per le pulsioni sperimentali, ci giochera' alla grande, io penso ...

Anomalous formation of molecules after vapor deposition. FonT. Dec 31, 2015.   

https://flashontrack.blogspot.com/2015/12/rmx-s-gst-anomalous-formation-of.html

mercoledì 14 giugno 2023

# gst: apropos of transitions, droplet trajectories during single and collective bursting bubbles

<< Mechanisms of droplet production from bursting bubbles have been extensively studied for single bubbles, but remain sparsely investigated in more complex collective settings. >>️

<< In the collective bubbling experiment, subsurface quasimonodisperse bubbles are rising up to the surface where, depending on the surfactant concentration, they can either merge or assemble in rafts of monodisperse bubbles. Drop trajectories are recorded, analyzed, and shown to exhibit uniquely distinctive features for the different production mechanisms: centrifuge film drops are ejected sideways, and jet drops are ejected vertically. Different single-burst scalings are finally compared to the experimental size-velocity relationships, and reveal that drops coming from collective bubble bursting appear slower and more scattered than when coming from single bursting bubbles. >>️

B. Neel and L. Deike. Velocity and size quantification of drops in single and collective bursting bubbles experiments. Phys. Rev. Fluids 7, 103603. Oct 5, 2022. 

Also: 'when a superbubble can generate trains of shock waves'. Mar 6, 2019.

Also: 'transition', 'droplet', 'droploid', 'bubble', in: https://www.inkgmr.net/kwrds.html

Keywords: gst, transition, drop, droplet, droploid, bubble, collective dynamics,  fluid dynamics

PS: << they can either merge or assemble in rafts of monodisperse bubbles >> ; this is poetry, without unnecessary adjectives, anzicheforse ... FonT. Wed June 14, 2023 16:58 (cest)


martedì 30 agosto 2022

# gst: size, location and shape of interfacial nanobubbles can be tuned by nanostructures.

<< the nucleation mechanism of spontaneously generated NBs (nanobubbles) at solid-liquid interfaces of immersed nanostructured hydrophobic surfaces is studied. Depending on the size and density of the surface nanostructures, NBs with different size and density were reproducibly and deterministically obtained. >>️

moreover, << air entrapment experiments on a porous PS (coated polystyrene) surface covered with irregular nanopores show that also the shape of NBs can also be tuned by surface nanostructures, due to their pinning effect. It is thus feasible to tune NB size, position, and even morphology by varying surface nanostructures. >>️

Yuliang Wang, Xiaolai Li, et al. Entrapment of Interfacial Nanobubbles on Nano Structured Surfaces. arXiv:2208.08181v1 [physics.flu-dyn]. Aug 17, 2022.

Also

keyword "bubble" in FonT


Keywords: gst, nano, bubble, tune, pinning effect️







martedì 6 novembre 2018

# gst: how a bubble pops

<< After a bubble bursts at a liquid surface, the collapse of the cavity generates capillary waves, which focus on the axis of symmetry to produce a jet. >>

AA << show that the time-dependent profiles of cavity collapse (..) and jet formation (..) both obey a  inviscid scaling, which results from a balance between surface tension and inertia forces. >>

Ching-Yao Lai, Jens Eggers, and Luc Deike. Bubble Bursting: Universal Cavity and Jet Profiles. Phys. Rev. Lett. 121, 144501. Oct 2, 2018

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.144501  

John Sullivan. Math describes how bubbles pop. Princeton University. Oct 31, 2018.

https://m.phys.org/news/2018-10-math.html

giovedì 5 marzo 2020

# gst: the sounds that occur when a soap bubble pops.

<< The popping sound of a bursting soap bubble is acquired using microphone arrays and analyzed using spherical harmonics decomposition. >>

the << acoustic emission originates mainly from the capillary stresses exerted by the liquid soap film on the air and that it quantitatively reflects the out-of-equilibrium evolution of the flowing liquid film. (..) the acoustic signature of violent events of physical or biological origin could be used to measure the forces at play during these events. >>

Adrien Bussonniere, Arnaud Antkowiak, et al. Acoustic Sensing of Forces Driving Fast Capillary Flows. Phys. Rev. Lett. 124, 084502 Feb 27, 2020.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.084502

Bob Yirka. Measuring the sound of a soap bubble popping. Phys.org. Mar 2, 2020.

https://m.phys.org/news/2020-03-soap.html

mercoledì 20 gennaio 2016

# rmx-s-chem: a precise dance with 1 nm bubbles

<< ‘Bubble pen’ can precisely write patterns with nanoparticles as small as 1 nanometer >>

<< With this we might see the dawn of the nano machines >> (comment by  OranjeeGeneral, january 18, 2016)

http://www.kurzweilai.net/bubble-pen-can-precisely-write-patterns-with-nanoparticles-as-small-as-1-nanometer

L. Lin, X. Peng, et al.  Bubble-Pen Lithography. Nano Letters. Vol. 16: Issue. 1: Pages. 701-708. Publication Date (Web): December 17, 2015 DOI: 10.1021/acs.nanolett.5b04524

http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b04524

venerdì 15 novembre 2019

# gst: interface mobility enhances the bounce effect of bubbles

<< Theoretically, when a bubble reaches the surface of a pure liquid, the thin film of liquid between the bubble and the air above should quickly drain away, allowing the bubble to coalesce with the air. The same would be expected when two bubbles meet within the liquid or when two droplets of oil come together in water.  >>

<< Counterintuitively, bubbles or droplets reaching the highly mobile fluorocarbon liquid-air interface bounced off of the interface much more strongly than from the immobilized interface. The reason is that there is less friction on the mobile interface and thus less energy is lost during the bounce. "To our knowledge, our studies and simulations are the first to demonstrate an enhanced bounce effect due to interface mobility," >> Ivan U. Vakarelski.

When bubbles bounce back.  King Abdullah University of Science and Technology. Nov 13, 2019.

https://m.phys.org/news/2019-11-when-bubbles-bounce-back.html

Ivan U. Vakarelski, Fan Yang, et al. 
Mobile-surface bubbles and droplets coalesce faster but bounce stronger. Science Advances  25 Oct 2019:
Vol. 5, no. 10, eaaw4292 DOI: 10.1126/sciadv.aaw4292 

https://advances.sciencemag.org/content/5/10/eaaw4292

mercoledì 16 dicembre 2015

# e-web-media: 'bubble effect' in information consumption

<<  people who seek out news and information from social media are at higher risk of becoming trapped in a "collective social bubble" compared to using search engines >>

http://news.indiana.edu/releases/iu/2015/12/social-media-bubbles.shtml

Dimitar Nikolov, Diego F.M. Oliveira, et al.  Measuring online social bubbles. PeerJ Computer Science, 2015; 1: e38 DOI: 10.7717/peerj-cs.38

https://peerj.com/articles/cs-38/

sabato 29 dicembre 2018

# gst: images of hypothetical realities; expansion of bubbles in extra dimensions (of tiny, vibrating "string- like" entities)

<< According to string theory, all matter consists of tiny, vibrating "string-like" entities. >>

AA << proposes a new structural concept, including dark energy, for a universe that rides on an expanding bubble in an additional dimension. >>

<< The researchers also show that expanding bubbles of this kind can come into existence within the framework of string theory. It is conceivable that there are more bubbles than ours, corresponding to other universes. >>

Our universe: An expanding bubble in an extra dimension. Uppsala University. Dec 28, 2018.

https://m.phys.org/news/2018-12-universe-extra-dimension.html

Souvik Banerjee, Ulf Danielsson, et al.  Emergent de Sitter Cosmology from Decaying Anti–de Sitter Space. Phys. Rev. Lett. 121, 261301. Dec 27, 2018.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.261301