Translate

Visualizzazione dei post in ordine di pertinenza per la query order. Ordina per data Mostra tutti i post
Visualizzazione dei post in ordine di pertinenza per la query order. Ordina per data Mostra tutti i post

sabato 26 marzo 2022

# gst life: apropos of critical points, love (at first sight and love from liking or friendship) might be a second-order phase transition.

<< The hypothesis of the human brain operation in vicinity of a critical point has been a matter of a hot debate in the recent years. >>

<< In this work, (AA) suggest that love might be an example of a second-order phase transition occurring in the brain. (They) show that this hypothesis explains a lot of well-known properties of love. Analyzing several most famous literature examples and a private diary, (they) show that the intensity of feelings exhibits a universal scaling behavior, distinguishing two cases: love at first sight and love developing from liking or friendship (friends first), both being studied in psychology. >>

The theory of second-order phase transitions developed by L.D. Landau (1980) << has inspired a lot of activity in physics, because it turned out that such transitions are characterized by a universal scaling behavior. Independently of the nature of the system, their parameters exhibit power law dependencies on the dimensionless parameter (temperature). >>

<< The key hypothesis of the present work is that love is a second-order phase transition occurring in the human brain under the influence of hormones, such as dopamine and serotonin (..). The brain switches from the normal operation in the critical regime to the supercritical regime because of the increase of the excitation (more dopamine) and reduction of the inhibition (less serotonin) (..). The order parameter of the transition is the intensity of feelings: before the transition, the subject has no particular feelings, while after the transition the feelings are non-zero. The most direct consequence is that the order parameter should exhibit a universal power law behavior: the feelings should grow as a square root of time α ∼√ >>

<< Since it is impossible to analyze the human feelings directly during such uncontrollable phenomenon as ”love at first sight”, (AA) have decided to perform a quantitative study of the intensity of feelings depicted in the literature. (..) (They) have chosen three well-known books for this analysis: ”Romeo and Juliet” (W. Shakespeare), ”The Lily of the Valley” (H. de Balzac, (..)), and ”Martin Eden” (J. London). >>

<< the case of a non-zero external ”bias”, which is a situation that occurs more often than love at first sight. Indeed, one usually knows several persons better than all the others, and thus some positive feelings towards some of them can be present before the transition occurs. (..) To study this transition quantitatively, (AA) have chosen another well-known book, ”Jane Eyre” by Charlotte Bronte. This books is also quite autobiographic, and famous for the psychological details, that got its author the title of ”first historian of the private consciousness”. The delay between the initial acquaintance and love is now of several weeks (about 45 days).

Dmitry Solnyshkov, Guillaume Malpuech. Love might be a second-order phase transition. arXiv: 2203.13246v1 [cond-mat.stat-mech]. Mar 24, 2022. 


Also

keyword 'transition' in FonT


keyword 'transizione' | 'transition' in Notes (quasi-stochastic poetry): 



keywords: gst, life, love, transitions,  critical point, phasetransition, second-order phase transition, brain, mind, behavior.







venerdì 12 luglio 2024

# gst: apropos of the transition of order from chaos, a universal behavior near a critical point.

<< As the Reynolds number is increased, a laminar fluid flow becomes turbulent, and the range of time and length scales associated with the flow increases. Yet, in a turbulent reactive flow system, as we increase the Reynolds number, (AA) observe the emergence of a single dominant timescale in the acoustic pressure fluctuations, as indicated by its loss of multifractality. >>️

AA << study the evolution of short-time correlated dynamics between the acoustic field and the flame in the spatiotemporal domain of the system.   >>️

<< the susceptibility of the order parameter, correlation length, and correlation time diverge at a critical point between chaos and order. (AA) results show that the observed emergence of order from chaos is a continuous phase transition (..) the critical exponents characterizing this transition fall in the universality class of directed percolation. >>️

The << paper demonstrates how a real-world complex, nonequilibrium turbulent reactive flow system exhibits universal behavior near a critical point. >>️

Sivakumar Sudarsanan, Amitesh Roy, et al. Emergence of order from chaos through a continuous phase transition in a turbulent reactive flow system. Phys. Rev. E 109, 064214. Jun 20, 2024. 

Also: order, chaos, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, order, chaos, transition 


venerdì 28 febbraio 2025

# gst: apropos of the impact of noise, stochastic Kuramoto oscillators with inertia and higher-order interactions.

<< The impact of noise in coupled oscillators with pairwise interactions has been extensively explored. Here, (AA) study stochastic second-order coupled Kuramoto oscillators with higher-order interactions and show that as noise strength increases, the critical points associated with synchronization transitions shift toward higher coupling values. By employing the perturbation analysis, (They) obtain an expression for the forward critical point as a function of inertia and noise strength. Further, for overdamped systems, (AA) show that as noise strength increases, the first-order transition switches to second-order even for higher-order couplings. >>
Priyanka Rajwani, Sarika Jalan. Stochastic Kuramoto oscillators with inertia and higher-order interactions. Phys. Rev. E 111, L012202. Jan 13, 2025.

Also: noise, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, noise, transition, coupled oscillators, synchronization transition


lunedì 23 settembre 2019

# gst: the hypothesis of a first order phase transition (a type of abrupt phase transition) to originate black holes observed by LIGO/Virgo in binary mergers.

<<  To summarize, motivated by the ~10 M* (mass similar to that of the sun) black holes observed by LIGO/Virgo in binary mergers, (AA) entertained the possibility that the quark-gluon confinement phase transition was first order due to the effect of 6 light quarks. The larger number of light quarks, compared to the standard case, pushes the transition temperature below ∼100 MeV. The first order nature of the transition significantly improves the likelihood of forming primordial black holes and its lower temperature suggests that these black holes can potentially be as heavy as ∼10 M*, compared to ∼M* for the standard QCD transition. >>

Hooman Davoudiasl.  LIGO/Virgo Black Holes from a First Order Quark Confinement Phase Transition. Phys. Rev. Lett. 123, 101102. Sep 6, 2019.   https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.101102  

Ingrid Fadelli. Theory proposes that LIGO/Virgo black holes originate from a first order phase transition. Sep 23, 2019.    https://m.phys.org/news/2019-09-theory-ligovirgo-black-holes-phase.html  

QCD = quantum chromodynamic  
https://en.m.wikipedia.org/wiki/Standard_Model

sabato 6 maggio 2023

# gst: nematic order condensation and topological defects in inertial active nematics


<< Living materials at different length scales manifest active nematic features such as orientational order, nematic topological defects, and active nematic turbulence. Using numerical simulations (AA) investigate the impact of fluid inertia on the collective pattern formation in active nematics. >>️

<< an incremental increase in inertial effects due to reduced viscosity results in gradual melting of nematic order with an increase in topological defect density before a discontinuous transition to a vortex-condensate state. The emergent vortex-condensate state at low enough viscosities coincides with nematic order condensation within the giant vortices and the drop in the density of topological defects. (AA) further show flow field around topological defects is substantially affected by inertial effects. (..) no evidence of universal scaling at higher viscosities. >>
Roozbeh Saghatchi, Mehmet Yildiz, Amin Doostmohammadi. Nematic order condensation and topological defects in inertial active nematics. Phys. Rev. E 106, 014705. July 25, 2022.

Also: 'turbulence', 'vortex', 'defect', 'drop' in https://www.inkgmr.net/kwrds.html

Keywords: gst, behavior, collective behavior, patterns, turbulence, nematic turbulence, viscosity, vortex, defect, drop


sabato 22 febbraio 2025

# gst: order and chaos in systems of coaxial vortex pairs

Fig. B.12: Ex. with 4 interact. vortex pairs

AA << have analyzed interactions between two and three coaxial vortex pairs, classifying their dynamics as either ordered or chaotic based on strengths, initial sizes, and initial horizontal separations.  >>️

They << found that periodic cases are scattered among chaotic ones across different initial configurations. Quasi-periodic leapfrogging typically occurs when the initial distances between the vortex pairs are small and cannot coexist with vortex-pair overtake. When the initial configuration splits into two interacting vortex pairs and a single propagating vortex pair, the two interacting pairs consistently exhibit periodic leapfrogging. For the smallest initial horizontal separations, the system predominantly exhibits chaotic or quasi-periodic motions rather than periodic leapfrogging with a single frequency. This behavior is due to the strong coupling between all three vortex pairs. When the pairs are in close proximity, more complex and chaotic dynamics emerge instead of periodic motion. >>

Their << findings indicate that quasi-periodic leapfrogging and chaotic interactions generally occur when the three vortex pairs have similar strengths and initial sizes. Conversely, discrepancies in these parameters cause the system to disintegrate into two subsystems: a single propagating vortex pair and two periodically leapfrogging pairs. >>️
Christiana Mavroyiakoumou, Wenzheng Shi. Order and Chaos in Systems of Coaxial Vortex Pairs. arXiv: 2502.07002v1 [physics.flu-dyn]. Feb 10, 2025. ️

Also: chaos, vortexorder, disorder, disorder & fluctuations, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chaos, vortex, order, disorder, disorder & fluctuations


martedì 16 luglio 2024

# gst: curiosity-driven search for novel behaviors.

<< One of the first exciting things to do with a new physical system is to go exploring—to tune parameters and see what unexpected behaviors the system is capable of. >>️

AA << combine active and unsupervised learning for automated exploration of nonequilibrium systems with unknown order parameters. (They) iteratively use active learning based on current order parameters to expand the library of behaviors and relearn order parameters based on this expanded library. (They) demonstrate the utility of this approach in Kuramoto models of increasing complexity. In addition to reproducing known phases, (AA) reveal previously unknown behavior and related order parameters, and demonstrate how to align search with human intuition. >>️

Martin J. Falk, Finnegan D. Roach, et al. Curiosity-driven search for novel nonequilibrium behaviors. Phys. Rev. Research 6, 033052. Jul 11, 2024. 

Also: curiosity, behav, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, curiosity, behav, transition


lunedì 21 giugno 2021

# gst: apropos of transitions, reversing order-disorder of Janus nano particles confined in two dimensions

<< Janus particles with different patch sizes, confined to two dimensions, generate a series of patterns of interest to the field of nanoscience >>

AA << observe reverse melting, where for some densities the system melts under cooling. For a broad range of hydrophobic patch sizes (..), a reentrant transition from solid to liquid and then to an ordered phase emerges as temperature (T) decreases due to the formation of rhombus chains at low T.  This reentrant phase has pseudo long-range orientational order but short-range translational order, >>

The << work provides guidelines to study the melting and assembly of Janus particles in two dimensions, as well as mechanisms to generate phases with specific symmetry. >>️️
Yihao Liang, Boran Ma, Monica Olvera de la Cruz. Reverse order-disorder transition of Janus particles confined in two dimensions. Phys. Rev. E 103, 062607. Jun 9, 2021.


Also

keyword 'nano' in FonT


keyword 'nano' in Notes 
(quasi-stochastic poetry)





sabato 8 febbraio 2025

# gst: criticality and multistability in quasi-2D turbulence

       Fig. 1(a) Helmholtz resonators


<< Two-dimensional (2D) turbulence, despite being an idealization of real flows, is of fundamental interest as a model of the spontaneous emergence of order from chaotic flows. The emergence of order often displays critical behavior, whose study is hindered by the long spatial and temporal scales involved. >>

Here AA << experimentally study turbulence in periodically driven nanofluidic channels with a high aspect ratio using superfluid helium. (They) find a multistable transition behavior resulting from cascading bifurcations of large-scale vorticity and critical behavior at the transition to quasi-2D turbulence consistent with phase transitions in periodically driven many-body systems. >>

AA << demonstrate that quasi-2D turbulent systems can undergo an abrupt change in response to a small change in a control parameter, consistent with predictions for large-scale atmospheric or oceanic flows. >>️

Filip Novotny, Marek Talir, et al. Critical behavior and multistability in quasi-two-dimensional turbulence. arXiv: 2406.08566v1 [physics.flu-dyn]. Jun 12, 2024.

Also: order, disorder, disorder & fluctuations, turbulence, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, order, disorder, disorder & fluctuations, criticality, turbulence, transition 


sabato 27 gennaio 2024

# gst: intertwining order, disorder, and hierarchy


<< Nature hosts a wealth of materials showcasing intricate structures intertwining order, disorder, and hierarchy, delivering resilient multifunctionality surpassing perfect crystals or simplistic disordered materials. The engineering of such materials through nanoparticle assembly represents a burgeoning field, poised with potential to yield sustainable material systems rivaling or exceeding biological functionalities. >>

AA << review delineates the fundamental concept of complexity in the context of nanoscale materials. >>

Xiaoming Mao, Nicholas Kotov. Complexity, Disorder, and Functionality of Nanoscale Materials. arXiv: 2401.09567v1 [cond-mat.soft]. Jan 17, 2024. 

Also: nano, particle, order, disorder, in  https://www.inkgmr.net/kwrds.html

Keywords: nano, particle, order, disorder 




venerdì 28 ottobre 2016

# s-gst-music: Hexacorda mollia inside acyclical order and disorder

<< A new composition for string quartet takes listeners on a journey into the weird world of soft matter >>

<< Hexacorda mollia revolves around the theme of order and disorder in soft matter—materials like liquid crystals and biological organisms that can be easily deformed by thermal fluctuations or an external stress, such as an electric or magnetic field. For many of these systems, this form of disorder is required to create ordered structures that can perform some function >>

<< Music is always going through various states of order to disorder and back again, in ways that [scientists] might recognize as phase transitions >>

Katherine Wright. Arts & Culture: A Quartet for Soft Matter. Physics 9, 92. Aug 5, 2016.

http://physics.aps.org/articles/v9/92

martedì 4 febbraio 2025

# gst: quadrupolar stress drives collapse of nematic order on frictional substrates.


<< The field of active nematics has traditionally employed descriptions based on dipolar activity, with interactions that align along a single axis. However, it has been theoretically predicted that interactions with a substrate, prevalent in most biological systems, would require novel forms of activity, such as quadrupolar activity, that are governed by hydrodynamic screening. >>

<< Here, by combining experiments and numerical simulations, (AA) show that upon light-induced solidification of the underlying medium, microtubule-kinesin mixtures undergo a transformation that leads to a biphasic active suspension. Using an active lyotropic model, (They) prove that the transition is governed by screening effects that alter the dominant form of active stress. Specifically, the combined effect of friction and quadrupolar activity leads to a hierarchical folding that follows the intrinsic bend instability of the active nematic layer. >>

AA << results demonstrate the dynamics of the collapse of orientational order in active nematics and present a new route for controlling active matter by modifying the activity through changing the surrounding environment. >>️

Aleksandra Ardaseva, Ignasi Velez-Ceron, et al. Beyond Dipolar Activity: Quadrupolar Stress Drives Collapse of Nematic Order on Frictional Substrates. arXiv: 2407.03723v3 [cond-mat.soft]. Jan 14, 2025. 

Also: transition, collapse, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, transition, collapse, active nematics, stress 




sabato 31 luglio 2021

# phys: Sir Isaac in the corner? The image of a "Time crystal", as a perpetual chaotic "out-of-equilibrium" phase; order and stability in an excited, evolving state.

<< A time crystal is a new phase of matter that, simplified, would be like having a snowflake that constantly cycled back and forth between two different configurations. It’s a seven-pointed lattice one moment and a ten-pointed lattice the next, or whatever. >>

<< What’s amazing about time crystals is that when they cycle back and forth between two different configurations, they don’t lose or use any energy. >>

<< Time crystals can survive energy processes without falling victim to entropy. The reason they’re called time crystals is because they can have their cake and eat it too. >>

<< They can be in a state of having eaten the whole cake, and then cycle right back to a state of still having the cake – and they can, theoretically, do this forever and ever. >>

<< Most importantly, they can do this inside of an isolated system. That means they can consume the cake and then magically make it reappear over and over again forever, without using any fuel or energy. >>️

Tristan Greene. Google's 'time crystals' could be the greatest scientific achievement of our lifetimes. Jul 30, 2021. 


<< The time crystal is the first “out-of-equilibrium” phase: It has order and perfect stability despite being in an excited and evolving state. >>
Natalie Wolchover. Eternal Change for No Energy: A Time Crystal Finally Made Real. Jul 30, 2021. 


Xiao Mi, Matteo Ippoliti, et al. Observation of Time-Crystalline Eigenstate Order on a Quantum Processor. arXiv:2107.13571v1 (quant-ph). Jul 28, 2021.



giovedì 18 gennaio 2024

# gst: pseudo epileptic seizures in self-organized bistability

<< Self-organized bistability (SOB) stands as a critical behavior for the systems delicately adjusting themselves to the brink of bistability, characterized by a first-order transition. >>️

(AA) << embark on a theoretical exploration that extends the boundaries of the SOB concept on a higher-order network (implicitly embedded microscopically within a simplicial complex) while considering the limitations imposed by coupling constraints. >>️

AA << use continuous synchronization diagrams and statistical data from spontaneous synchronized events to demonstrate the crucial role SOB plays in initiating and terminating temporary synchronized events. (They) show that under weak coupling consumption, these spontaneous occurrences closely resemble the statistical traits of the epileptic brain functioning. >>
Md Sayeed Anwar, Nikita Frolov, Alexander E. Hramov, Dibakar Ghosh. Self-organized bistability on globally coupled higher-order networks. arXiv: 2401.02825v1 [nlin.AO]. Jan 5, 2024.

Also: transition, self-assembly, brain, in: https://www.inkgmr.net/kwrds.html

Keywords: gst, transition, self-assembly, bistability, self-organized bistability, brain, epileptic seizure

sabato 7 novembre 2020

# gst: apropos of nano vortices: the stabilization of skyrmions by weak higher-order exchange interactions

<< Tiny magnetic whirls that can occur in materials—so-called skyrmions— hold high promises for novel electronic devices or magnetic memory in which they are used as bits to store information. A fundamental prerequisite for any application is the stability of these magnetic whirls. >>

<< Previously, a standard model of the relevant magnetic interactions contributing to the (energy) barrier has been established. >>

<< one type of magnetic interactions has so far been overlooked. In the 1920s Werner Heisenberg could explain the occurrence of ferromagnetism by the quantum mechanical exchange interaction which results from the spin dependent "hopping" of electrons between two atoms. "If one considers the electron hopping between more atoms, higher-order exchange interactions occur," says Dr. Souvik Paul, (..). However, these interactions are much weaker than the pair-wise exchange proposed by Heisenberg and were thus neglected in the research on skyrmions. >>

<< Based on atomistic simulations and quantum mechanical calculations (..)  (AA) have now explained that these weak interactions (at a higher temperature than room temperature) can still provide a surprisingly large contribution to skyrmion stability. Especially the cyclic hopping over four atomic sites (..) influences the energy of the transition state extraordinarily strongly (..), where only a few atomic bar magnets are tilted against each other. Even stable antiskyrmions were found in the simulations which are advantageous for some future data storage concepts but typically decay too fast. >>

Julia Siek­mann. Scientists find a new mechanism for the stabilization of skyrmions. Kiel University. Sep 21, 2020.


Paul, S., Haldar, S., von Malottki, S. et al. Role of higher- order exchange interactions for skyrmion stability. Nat Commun 11, 4756. doi: 10.1038/ s41467-020-18473-x. Sep 21, 2020.





giovedì 29 febbraio 2024

# gst: an analogy between geometrical frustrations and nonreciprocal systems

<< A system is geometrically frustrated when its members cannot find a configuration that simultaneously minimizes all their interaction energies, (..). A nonreciprocal system is one whose members have conflicting, asymmetric goals, as exemplified by an ecosystem of predators and prey. >>️

<< Ryo Hanai (..) has identified a powerful mathematical analogy between those two types of dynamical systems. >>️

Peter Littlewood. Nonreciprocal Frustration Meets Geometrical Frustration. Physics 17, 32. Feb 26, 2024. 

Ryo Hanai. Nonreciprocal Frustration: Time Crystalline Order-by-Disorder Phenomenon and a Spin-Glass-like State. Phys. Rev. X 14, 011029. Feb 26, 2024. 

Also: order, disorder, disorder & fluctuations, noise, analogy, in https://www.inkgmr.net/kwrds.html

Keywords: gst, analogy, order, disorder, noise



sabato 14 ottobre 2023

# gst: emergence of chimeras driven by non-normality


<< The emergence of order in nature manifests in different phenomena, with synchronization being one of the most representative examples. >>️

<< Particular attention has been paid to the emergence of chimera states, where subsets of synchronized oscillations coexist with asynchronous ones. Such coexistence of coherence and incoherence is a perfect example where order and disorder can persist in a long-lasting regime. >>

<< Based on a symmetry-breaking mechanism, in this paper, (AA) shed light on the role that non-normality, a ubiquitous structural property of real networks, has in the emergence of several diverse dynamical phenomena, e.g., amplitude chimeras or oscillon patterns. >>️

<< Specifically, (they) demonstrate that the prevalence of source or leader nodes in networks leads to the manifestation of phase chimera states. >>️

Riccardo Muolo, Joseph D. O'Brien, et al. Persistence of chimera states and the challenge for synchronization in real-world networks. arXiv: 2306.00237v1 [nlin.PS]. May 31, 2023.

Also: chimera, network, in: https://www.inkgmr.net/kwrds.html

Keywords: gst, chimera, network, synchronization, swarm, noise, order, disorder, normal


lunedì 24 febbraio 2025

# gst: when homogeneous systems meet dissipation and disorder.

AA << investigate the localization and topological properties of the non-equilibrium steady state (NESS) in a one-dimensional homogeneous system. (Their) results demonstrate that, despite the absence of disorder in the initial system, the NESS can exhibit localization under bond dissipation. >>

<< Conversely, for an initially flat-band system with compactly localized wave functions, the NESS is delocalized. >>

<< Furthermore, (They) find that the initial localization characteristics of the system significantly influence the localization properties of the NESS. Drawing upon the concept of Bose-Einstein condensate broadening in cold-atom experiments, along with experimental data, (AA) systematically characterize the impact of disorder on the localization and topological properties of the NESS. >>

<< The phase diagram reveals that the NESS can be topologically non-trivial even when the initial state is topologically trivial, and that the topological triviality of the initial state weakens the topological non-triviality of the NESS. >>

Xixi Feng, Ao Zhou, et al. When Homogeneous Systems Meet Dissipation and Disorder. arXiv: 2502.11383v1 [cond-mat.dis-nn]. Feb 17, 2025. 

Also: order, disorder, disorder & fluctuations, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, order, disorder, disorder & fluctuations, transitions


giovedì 16 maggio 2024

# gst: apropos of avoidance, packing of stiff rods on ellipsoids; the effects of self-avoidance

AA << study the effects of geometry and self-avoidance on the ordering of slender filaments inside nonisotropic containers, considering cortical microtubules in plant cells, and packing of genetic material inside viral capsids as concrete examples. >>

<< Within a mean-field approximation, (AA) show analytically how the shape of the container, together with self-avoidance, affects the ordering of the stiff rods. (They)  find that the strength of the self-avoiding interaction plays a significant role in the preferred packing orientation, leading to a first-order transition for oblate cells, where the preferred orientation changes from azimuthal, along the equator, to a polar one, when self-avoidance is strong enough. >>

<< While for prolate spheroids the ground state is always a polar-like order, strong self-avoidance results with a deep metastable state along the equator. >>

<< the critical behavior of this system is in fact related to the butterfly catastrophe model. >>

Doron Grossman, Eytan Katzav. Effects of self-avoidance on the packing of stiff rods on ellipsoids. Phys. Rev. E 109, 054111. May 9, 2024. 

Also: spheroids, self-assembly, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, ellipsoids, spheroids,  oblate- prolate spheroids, avoidance, self-avoidance


venerdì 10 febbraio 2023

# gst: apropos of transitions, a perpetual dance between states of meta-stability and chaos (in brain).


<< Hello! Today: new research is shining a light on how our brains flit between states of stability and chaos, depending on what we’re doing. >>

<< Our brains exist in a state somewhere between stability and chaos as they help us make sense of the world, according to recordings of brain activity taken from volunteers over the course of a week. >>

<< As we go from reading a book to chatting with a friend, for example, our brains shift from one semi-stable state to another—but only after chaotically zipping through multiple other states in a pattern that looks completely random. >>

<< Understanding how our brains restore some degree of stability after chaos could help us work out how to treat disorders at either end of this spectrum. Too much chaos is probably what happens when a person has a seizure, whereas too much stability might leave a person comatose. >>

Jessica Hamzelou. Neuroscientists listened in on people’s brains for a week. They found order and chaos. Rhiannon Williams. MIT Download. Feb 8, 2023.


<< The team (Avniel Ghuman, Maxwell Wang, et al.) found some surprising patterns in brain activity over the course of the week. Specific brain networks seemed to communicate with each other in what looked like a “dance,” with one region appearing to “listen” while the other “spoke,” say the researchers, who presented their findings at the Society for Neuroscience annual meeting in San Diego last year. >>

Jessica Hamzelou. MIT Tech Rev. Feb 7, 2023. 

Also 

keyword 'danza' in Notes
(quasi-stochastic poetry)

keyword 'dance' in FonT

keyword 'cervello' | 'brain' in Notes
(quasi-stochastic poetry)


keyword 'brain' in FonT

keyword 'chaos' | 'chaotic' in Font


keyword 'caos' | 'caotico' in Notes (quasi-stochastic poetry)


<< Amico, qualunque  cosa suonerai . . . >>  Jelly Roll Morton. cit.: 2113 - soniche a ramulo. Jan 28, 2007


Keywords: gst, brain, transition, chaos, dance