Translate

Visualizzazione dei post in ordine di pertinenza per la query chaos. Ordina per data Mostra tutti i post
Visualizzazione dei post in ordine di pertinenza per la query chaos. Ordina per data Mostra tutti i post

venerdì 10 febbraio 2023

# gst: apropos of transitions, a perpetual dance between states of meta-stability and chaos (in brain).


<< Hello! Today: new research is shining a light on how our brains flit between states of stability and chaos, depending on what we’re doing. >>

<< Our brains exist in a state somewhere between stability and chaos as they help us make sense of the world, according to recordings of brain activity taken from volunteers over the course of a week. >>

<< As we go from reading a book to chatting with a friend, for example, our brains shift from one semi-stable state to another—but only after chaotically zipping through multiple other states in a pattern that looks completely random. >>

<< Understanding how our brains restore some degree of stability after chaos could help us work out how to treat disorders at either end of this spectrum. Too much chaos is probably what happens when a person has a seizure, whereas too much stability might leave a person comatose. >>

Jessica Hamzelou. Neuroscientists listened in on people’s brains for a week. They found order and chaos. Rhiannon Williams. MIT Download. Feb 8, 2023.


<< The team (Avniel Ghuman, Maxwell Wang, et al.) found some surprising patterns in brain activity over the course of the week. Specific brain networks seemed to communicate with each other in what looked like a “dance,” with one region appearing to “listen” while the other “spoke,” say the researchers, who presented their findings at the Society for Neuroscience annual meeting in San Diego last year. >>

Jessica Hamzelou. MIT Tech Rev. Feb 7, 2023. 

Also 

keyword 'danza' in Notes
(quasi-stochastic poetry)

keyword 'dance' in FonT

keyword 'cervello' | 'brain' in Notes
(quasi-stochastic poetry)


keyword 'brain' in FonT

keyword 'chaos' | 'chaotic' in Font


keyword 'caos' | 'caotico' in Notes (quasi-stochastic poetry)


<< Amico, qualunque  cosa suonerai . . . >>  Jelly Roll Morton. cit.: 2113 - soniche a ramulo. Jan 28, 2007


Keywords: gst, brain, transition, chaos, dance



mercoledì 19 maggio 2021

# gst: a scenario in which System Theory meets Poetry, bird's-eye vistas into a primitive chaos

<< The notion of primitive chaos was proposed [J. Phys. Soc. Jpn. 79, 15002 (2010)] as a notion closely related to the fundamental problems of physics itself such as determinism, causality, free will, predictability, and irreversibility. In this letter, (AA) introduce the notion of bird's-eye view into the primitive chaos, and (they) find a new hierarchic structure of the primitive chaos. This means that if we find a chaos in a real phenomenon or a computer simulation, behind it, we can clearly realize the possibility of tremendous varieties of chaos in the hierarchic structure unless we can see them visually. >>

<< This fact provides a totally new method of viewing our world. >>️️

Yoshihito Ogasawara. Bird's-Eye View of Primitive Chaos. arXiv:2105.04796v2 [nlin.CD]. May 17, 2021. 


Also

Ludwig von Bertalanffy  (gst)  


keyword 'caos' | 'caotico' in Notes (quasi-stochastic poetry)




martedì 9 luglio 2024

# gst: discontinuous transition to chaos in a canonical random neural network


AA << study a paradigmatic random recurrent neural network introduced by Sompolinsky, Crisanti, and Sommers (SCS). In the infinite size limit, this system exhibits a direct transition from a homogeneous rest state to chaotic behavior, with the Lyapunov exponent gradually increasing from zero. (AA)  generalize the SCS model considering odd saturating nonlinear transfer functions, beyond the usual choice 𝜙⁡(𝑥)=tanh⁡𝑥. A discontinuous transition to chaos occurs whenever the slope of 𝜙 at 0 is a local minimum [i.e., for 𝜙′′′⁢(0)>0]. Chaos appears out of the blue, by an attractor-repeller fold. Accordingly, the Lyapunov exponent stays away from zero at the birth of chaos. >>

In the figure 7 << the pink square is located at the doubly degenerate point (𝑔,𝜀)=(1,1/3). >>️️

Diego Pazó. Discontinuous transition to chaos in a canonical random neural network. Phys. Rev. E 110, 014201. July 1, 2024.

Also: chaos, random, network, transition, neuro, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chaos, random, network, transition, neuro


venerdì 26 luglio 2024

# gst: Resonancelike emergence of chaos in complex networks of damped-driven nonlinear systems.

AA << solve a critical outstanding problem in this multidisciplinary research field: the emergence and persistence of spatiotemporal chaos in complex networks of damped-driven nonlinear oscillators in the significant weak-coupling regime, while they exhibit regular behavior when uncoupled. >>

They << uncover and characterize the basic physical mechanisms concerning both heterogeneity-induced and impulse-induced emergence, enhancement, and suppression of chaos in starlike and scale-free networks of periodically driven, dissipative nonlinear oscillators. >>️

Ricardo Chacon, Pedro J. Martínez. Resonancelike emergence of chaos in complex networks of damped-driven nonlinear systems. Phys. Rev. E 110, 014209. Jul 19, 2024. 

Also: network, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, network, resonance, chaos


venerdì 12 luglio 2024

# gst: apropos of the transition of order from chaos, a universal behavior near a critical point.

<< As the Reynolds number is increased, a laminar fluid flow becomes turbulent, and the range of time and length scales associated with the flow increases. Yet, in a turbulent reactive flow system, as we increase the Reynolds number, (AA) observe the emergence of a single dominant timescale in the acoustic pressure fluctuations, as indicated by its loss of multifractality. >>️

AA << study the evolution of short-time correlated dynamics between the acoustic field and the flame in the spatiotemporal domain of the system.   >>️

<< the susceptibility of the order parameter, correlation length, and correlation time diverge at a critical point between chaos and order. (AA) results show that the observed emergence of order from chaos is a continuous phase transition (..) the critical exponents characterizing this transition fall in the universality class of directed percolation. >>️

The << paper demonstrates how a real-world complex, nonequilibrium turbulent reactive flow system exhibits universal behavior near a critical point. >>️

Sivakumar Sudarsanan, Amitesh Roy, et al. Emergence of order from chaos through a continuous phase transition in a turbulent reactive flow system. Phys. Rev. E 109, 064214. Jun 20, 2024. 

Also: order, chaos, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, order, chaos, transition 


mercoledì 3 marzo 2021

# gst: labyrinth chaos: revisiting the elegant, chaotic and hyperchaotic walks

<< Labyrinth chaos was discovered by Otto Rossler and Rene' Thomas in their endeavour to identify the necessary mathematical conditions for the appearance of chaotic and hyperchaotic motion in continuous flows. Here, (AA) celebrate their discovery by considering a single labyrinth walks system and an array of coupled labyrinth chaos systems that exhibit complex, chaotic behaviour, reminiscent of chimera-like states, a peculiar synchronisation phenomenon. >>

 << As all Rossler’s pioneering contributions, labyrinth chaos still holds promise for very interesting further developments. Its simplicity and elegance, both in terms of symmetries, topology and feedback-circuit structure, makes it a good candidate to compare it with other nonlinear, cyclically coupled systems, such as the Arabesques, the Lotka-Voltera system and its variants, and the Arnold-Beltrami-Childress  model. >> 

Vasileios Basios, Chris G. Antonopoulos, Anouchah Latifi. Labyrinth chaos: Revisiting the elegant, chaotic and hyperchaotic walks. arXiv: 2011.11009v1. Nov 22, 2020.






sabato 16 novembre 2024

# gst: apropos of transverse instabilities, from chimeras to extensive chaos

<< Populations of coupled oscillators can exhibit a wide range of complex dynamical behavior, from complete synchronization to chimera and chaotic states. We can thus expect complex dynamics to arise in networks of such populations. >>️

Here AA << analyze the dynamics of networks of populations of heterogeneous mean-field coupled Kuramoto-Sakaguchi oscillators, and show that the instability that leads to chimera states in a simple two-population model also leads to extensive chaos in large networks of coupled populations. >>️

Pol Floriach, Jordi Garcia-Ojalvo, Pau Clusella. From chimeras to extensive chaos in networks of heterogeneous Kuramoto oscillator populations. arXiv: 2407.20408v2 [nlin.CD]. Oct 11, 2024.

Also: chimera, instability, chaos, network, in 

Keywords: gst, chimera, instability, chaos, network


giovedì 1 agosto 2024

# game: hypothesis of a geometric design of chaotic attractors, on demand


AA << propose a method using reservoir computing to generate chaos with a desired shape by providing a periodic orbit as a template, called a skeleton. (They) exploit a bifurcation of the reservoir to intentionally induce unsuccessful training of the skeleton, revealing inherent chaos. The emergence of this untrained attractor, resulting from the interaction between the skeleton and the reservoir's intrinsic dynamics, offers a novel semi-supervised framework for designing chaos. >>️

Tempei Kabayama, Yasuo Kuniyoshi, et al. Designing Chaotic Attractors: A Semi-supervised Approach. arXiv: 2407.09545v1 [cs.NE]. Jun 27, 2024.

Also: game, chaos in https://www.inkgmr.net/kwrds.html 

Keywords: game, chaos, chaotic attractors


lunedì 10 giugno 2024

# gst: chaos controlled and disorder driven phase transitions by breaking permutation symmetry


<< Introducing disorder in a system typically breaks symmetries and can introduce dramatic changes in its properties such as localization. At the same time, the clean system can have distinct many-body features depending on how chaotic it is. >>

<< In this work the effect of permutation symmetry breaking by disorder is studied in a system which has a controllable and deterministic regular to chaotic transition. >>

<< Results indicate a continuous phase transition from an area-law to a volume-law entangled phase irrespective of whether there is chaos or not, as the strength of the disorder is increased. The critical disorder strength obtained by finite size scaling, indicate a strong dependence on whether the clean system is regular or chaotic to begin with. >>

<< Additionally, (AA) find that a relatively small disorder is seen to be sufficient to delocalize a chaotic system. >>

Manju C, Arul Lakshminarayan, Uma Divakaran. Chaos controlled and disorder driven phase transitions by breaking permutation symmetry. arXiv: 2406.00521v1 [quant-ph]. Jun 1, 2024. 

Also: transition, chaos, disorder, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, transition, chaos, disorder 

FonT: who is Manju C?



venerdì 30 marzo 2018

# gst: quantum chaos to approach the evolution of a dynamic system

<< A study on the evolution of dynamic systems [..] has unexpectedly led to a better understanding of the chaos in the quantum world >>

<< The tools needed to explore the rigidity of dynamic systems [..] far exceeded those currently available, forcing the team to learn from neighboring disciplines >>

<< As a by-product of this process, researchers have identified the applicability of this project to quantum mechanics, which has led them to formulate a new theorem of thermodynamic quantum chaos combining ideas from large networks. Large networks — such as Big Data, social networks, convolutional neural networks of Artificial Intelligence models — which, although commonly used today, do not yet have adequate theories to explain their operation >>

Shakes Gilles. Study of dynamical systems leads to better understanding of quantum chaos. March 27, 2018.

https://www.thetalkingdemocrat.com/2018/03/study-of-dynamical-systems-leads-to-better-understanding-of-quantum-chaos/

mercoledì 30 giugno 2021

# gst: weird Nature; randomly arranged nanowire networks seem to behave, at the edge of chaos, like cortical neuronal cultures

<< an artificial network of nanowires can be tuned to respond in a brain-like way when electrically stimulated. >>️

<< If the signal stimulating the network was too low, then the pathways were too predictable and orderly and did not produce complex enough outputs to be useful. If the electrical signal overwhelmed the network, the output was completely chaotic and useless for problem solving. The optimal signal for producing a useful output was at the edge of this chaotic state. >>️

<< Some theories in neuroscience suggest the human mind could operate at this edge of chaos, or what is called the critical state, (..) Some neuroscientists think it is in this state where we achieve maximal brain performance. (..) What's so exciting about this result is that it suggests that these types of nanowire networks can be tuned into regimes with diverse, brain-like collective dynamics, which can be leveraged to optimize information processing. >> Zdenka Kuncic.️

<< In the nanowire network the junctions between the wires allow the system to incorporate memory and operations into a single system. This is unlike standard computers, which separate memory (RAM) and operations (CPUs). >>

<< These junctions act like computer transistors but with the additional property of remembering that signals have traveled that pathway before. As such, they are called 'memristors', >> Joel Hochstetter.
'Edge of chaos' opens pathway to artificial intelligence discoveries. University of Sydney. Jun 29, 2021.


Joel Hochstetter, Ruomin Zhu, et al. Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat Commun 12, 4008. doi: 10.1038/ s41467-021-24260-z. Jun 29, 2021.





martedì 5 aprile 2022

# gst: the solitary route to chimera states.

AA << show how solitary states in a system of globally coupled FitzHugh-Nagumo oscillators can lead to the emergence of chimera states. By a numerical bifurcation analysis of a suitable reduced system in the thermodynamic limit (they) demonstrate how solitary states, after emerging from the synchronous state, become chaotic in a period-doubling cascade. Subsequently, states with a single chaotic oscillator give rise to states with an increasing number of incoherent chaotic oscillators. In large systems, these chimera states show extensive chaos. (AA) demonstrate the coexistence of many of such chaotic attractors with different Lyapunov dimensions, due to different numbers of incoherent oscillators. >>

<<  While it is well known that self-organized wave patterns typically coexist within an interval of possible different wave numbers (..)(AA) show here the coexistence of coherence-incoherence patterns with different numbers of incoherent oscillators, which are in fact coexisting chaotic attractors with different Lyapunov dimensions. The incoherent oscillators in these coexisting attractors show extensive chaos of different dimensions. The total share of incoherent oscillators in a chimera state is a macroscopic quantity. Hence, within the range of such shares, where stable chimera states exist, (AA) find, for large systems, an increasing number of coexisting attractors with their numbers of incoherent oscillators increasing as well. (They) showed that, varying the coupling parameter, this extensive scenario is linked to the thermodynamic limit of the solitary regime, where the range of admissible numbers of incoherent oscillators shrinks down to one single oscillator in an infinitely large system. For this case, the emergence of the chaotic motion of the single incoherent oscillator could be shown in a period doubling cascade. >>

Leonhard Schulen, Alexander Gerdes, et al. The solitary route to chimera states. arXiv:2204.00385v1 [nlin.CD]. Apr 1, 2022.


Also

keyword 'FitzHugh-Nagumo oscillators' in APS | PubMed



keyword 'chaos' | 'chaotic' in Font



keyword 'caos' | 'caotico' in Notes (quasi-stochastic poetry)



keywords: gst, solitons, solitary states, period-doubling cascade, chaos, Lyapunov dimension, FitzHugh-Nagumo oscillator, chimera state, dynamical systems.







martedì 24 ottobre 2017

# gst: it would use chaos to compute efficiently

<< When you’re really harried, you probably feel like your head is brimful of chaos. You’re pretty close. Neuroscientists say your brain operates in a regime termed the “edge of chaos,” and it’s actually a good thing. It’s a state that allows for fast, efficient analog computation of the kind that can solve problems that grow vastly more difficult as they become bigger in size >>

<< A micrograph shows the construction of a Mott memristor composed of an 8-nanometer-thick layer of niobium dioxide between two layers of titanium nitride >>

Samuel K. Moore. Memristor-Driven Analog Compute Engine Would Use Chaos to Compute Efficiently. Oct  9, 2017

https://spectrum.ieee.org/nanoclast/semiconductors/devices/memristordriven-analog-compute-engine-would-use-chaos-to-compute-efficiently

FonT

"When you’re really harried" ... only?

lunedì 14 ottobre 2019

# gst: chaotic dynamics modulate complex systems, even in the presence of extrinsic and intrinsic noise

AA << find that chaotic dynamics modulates gene expression and up-regulates certain families of low-affinity genes, even in the presence of extrinsic and intrinsic noise. Furthermore, this leads to an increase in the production of protein complexes and the efficiency of their assembly. Finally, (AA) show how chaotic dynamics creates a heterogeneous population of cell states, and describe how this can be beneficial in multi-toxic environments. >>

Mathias L. Heltberg, Sandeep Krishna, Mogens H. Jensen. On chaotic dynamics in transcription factors and the associated effects in differential gene regulation.  Nature Comm. volume 10, Article number: 71 Jan 8, 2019.   https://www.nature.com/articles/s41467-018-07932-1  

<< Chaos in bodily regulation can optimize our immune system according to a recent discovery made by researchers at the University of Copenhagen's Niels Bohr Institute. The discovery may prove to be of great significance for avoiding serious diseases such as cancer and diabetes.  >>

Chaos in the body tunes up your immune system. Niels Bohr Institute.
Jan 16, 2019.   https://m.medicalxpress.com/news/2019-01-chaos-body-tunes-immune.html

Also

'l'immaginifico "tracciante ... che svagola nella macina ...'    in:  2149 - onda di predazione (to knock seals off the ice). Notes. Dec 17, 2007.    https://inkpi.blogspot.com/2007/12/2149-onda-di-predazione-to-knock-seals.html

Also

never boring with chaos and tit-for-tat theories. F.on.T. Jun 12, 2016.  https://flashontrack.blogspot.com/2016/06/s-gst-never-boring-with-chaos-and-tit.html

lunedì 3 settembre 2018

# gst: a chaos-inducing approach against superbugs evolution

<< The CHAOS [Controlled Hindrance of Adaptation of OrganismS] method takes advantage of this effect, pulling multiple genetic levers in order to build up stress on the bacterial cell and eventually trigger a cascading failure, leaving the bug more vulnerable to current treatments. The technique does not alter the bug's DNA itself, only the expression of individual genes, similar to the way a coded message is rendered useless without the proper decryption. >>

<< We now have a way to cut off the evolutionary pathways of some of the nastiest bugs and potentially prevent future bugs from emerging at all, >> Peter Otoupal

Chaos-inducing genetic approach stymies antibiotic-resistant superbugs. University of Colorado at Boulder. Sept 3, 2018.

https://m.phys.org/news/2018-09-chaos-inducing-genetic-approach-stymies-antibiotic-resistant.html 

<< While individual perturbations improved fitness during antibiotic exposure, multiplexed perturbations caused large fitness loss in a significant epistatic fashion. >>

Peter B. Otoupal, William T. Cordell, et al. Multiplexed deactivated CRISPR-Cas9 gene expression perturbations deter bacterial adaptation by inducing negative epistasis. Comm  Biol 1 (129) Sept 3, 2018

https://www.nature.com/articles/s42003-018-0135-2

martedì 21 giugno 2022

# gst: even tight-binding billiards could exhibit chaotic behaviors


<< Recent works have established universal entanglement properties and demonstrated validity of single-particle eigenstate thermalization in quantum-chaotic quadratic Hamiltonians. However, a common property of all quantum-chaotic quadratic Hamiltonians studied in this context so far is the presence of random terms that act as a source of disorder. >>

AA << introduce tight-binding billiards in two dimensions, which are described by non-interacting spinless fermions on a disorder-free square lattice subject to curved open boundaries. >>

They <<  show that many properties of tight-binding billiards match those of quantum-chaotic quadratic Hamiltonians (..) these properties indeed appear to be consistent with the emergence of quantum chaos in tight-binding billiards. This statement nevertheless needs to be taken with some care since there exist a sub-extensive (in lattice volume) set of single-particle eigenstates that are degenerate in the middle of the spectrum at zero energy (i.e., zero modes), for which the agreement with RMT (random matrix theory) predictions may not be established. >>

Iris Ulcakar, Lev Vidmar. Tight-binding billiards. arXiv:2206.07078v1 [cond-mat.stat-mech]. Jun 14, 2022. 


Also

keyword 'billiard' in FonT


keyword 'chaos' | 'chaotic' in Font



keyword 'caos' | 'caotico' in Notes (quasi-stochastic poetry)



keywords: gst, billiard, chaos, chaotic behavior








giovedì 20 giugno 2024

# gst: elasticity of fibres prefers the chaos of turbulence.

FIG. 4. Maximal Lyapunov exponents λ1 associated with the flow regions sampled by the fibre centre of masses in a 3D turbulent flow. 

<< Turbulent flows are ubiquitous in nature and are responsible for numerous transport phenomena that help sustain life on earth. >>️

AA << have shown that the stretching of fibres is due only to elasticity and their inertia playing a minimal role as they are advected by a turbulent carrier flow. A highly elastic fibre is much more likely to be stretched out and as a result prefers a “straighter” configuration rather than a coiled one. >>️

<< These inertial, elastic fibres then exhibit non-trivial preferential sampling of a 3D turbulent flow in a manner qualitatively similar to 2D turbulence (..). Inertia leads fibres away from vortical regions while their elasticity pulls them inside the vortices. Upto a moderate inertia (St ∼ O(1)), fibres increasingly prefer the straining regions of the flow, while at much larger inertia (St ≫ 1) they decorrelate from the flow and preference for straining regions begins to diminish again. >>️

<< However, owing to a large elasticity, fibres get trapped in vortical regions (at small St), as well as are unable able to exit the straining regions quickly. A more elastic and extensible fibre is, thus, more likely to spend longer times in both vortical and the straining regions of the flow. >>️

<< This picture of preferential sampling of a 3D turbulent flow by elastic, inertial fibres is also confirmed by alternately studying the chaoticity of the sampled flow regions via Lyapunov Exponents. Less elastic fibres prefer less chaotic (vortical) regions of the flow while more chaotic (straining) regions are preferred at large Wi. LEs also confirm that preferential sampling has a non-monotonic dependence on St for small elasticity but which is lost when Wi becomes very large.  >>

<< It would (..) be even more interesting to see how chaotic the fibre trajectories themselves are and what that has to say about fibre dynamics in turbulent flows. >>️
Rahul K. Singh. Elasticity of fibres prefers the chaos of turbulence. arXiv: 2406.06033v1. Jun 10, 2024.

Also: elastic, chaos, turbulence, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, elastic, chaos, turbulence


venerdì 18 ottobre 2024

# gst: isles of regularity (depending on the initial setup) in a sea of chaos amid the gravitational three-body problem.


AA << study probes the presence of regular (i.e. non-chaotic) trajectories within the 3BP (three-body problem) and assesses their impact on statistical escape theories. >>

AA << analysis reveals that regular trajectories occupy a significant fraction of the phase space, ranging from 28% to 84% depending on the initial setup, and their outcomes defy the predictions of statistical escape theories. The coexistence of regular and chaotic regions at all scales is characterized by a multi-fractal behaviour. >>

Alessandro Alberto Trani, Nathan W.C. Leigh, et al. Isles of regularity in a sea of chaos amid the gravitational three-body problem. A&A, 689, A24, Jun 25, 2024.

"Islands" of Regularity Discovered in the Famously Chaotic Three-Body Problem. University of Copenhagen. Oct 11, 2024.

Also: three balls, escape, chaos, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, three balls, escape, chaos, transition 


lunedì 27 dicembre 2021

# gst: reshaping Kuramoto model, when a collective dynamics becomes chaotic, with a surprisingly weak coupling.

<< The emergence of collective synchrony from an incoherent state is a phenomenon essentially described by the Kuramoto model (..) Collective synchronization is a phenomenon in which an ensemble of heterogeneous, self-sustained oscillatory units (commonly known as oscillators) spontaneously entrain their rhythms. This is a pervasive phenomenon observed in natural systems and man-made devices, covering a wide range of spatio-temporal scales, from cell aggregates to swarms of fireflies >>

<< However, this is only partly true, (..) Kuramoto’s perturbative phase-reduction approach is valid for weak coupling. Specifically, oscillator heterogeneity and interactions appear at zeroth and linear orders in the coupling constant, respectively. >> 

AA << have introduced the ‘enlarged Kuramoto model’; a population of phase oscillators in which three-body interactions enter in a perturbative way. Remarkably, this makes a world of difference, drastically reshaping the traditional Kuramoto scenario. The ‘enlarged Kuramoto model’ exhibits a variety of unsteady states, including collective chaos and hyperchaos. >>

Ivan Leon, Diego Pazo. Enlarged Kuramoto Model: Secondary Instability and Transition to Collective Chaos. arXiv: 2112.00176v1 [nlin.AO]. Nov 30, 2021.


Also

More on the three-body problem (695 families of collisionless orbits). FonT. Oct 16, 2017. 


Keywords: gst, behav, instability, Kuramoto model, three-body interactions, chaos, collective chaos, hyperchaos.

sabato 17 agosto 2024

# gst: networks of pendula with diffusive interactions, chaotic regime seems to emerge at low energies.

AA << study a system of coupled pendula with diffusive interactions, which could depend both on positions and on momenta. The coupling structure is defined by an undirected network, while the dynamic equations are derived from a Hamiltonian; as such, the energy is conserved. >>️

<< The behaviour observed showcases a mechanism for the appearance of chaotic oscillations in conservative systems. For Hamiltonians with two degrees of freedom, it has been shown how chaos can emerge near a saddle-centre equilibrium possessing a homoclinic orbit. (AA) have seen that higher-dimensional systems having mixed equilibria, i.e., generalisations of a saddle-center where the eigenvalues are only imaginary and reals, also show chaotic behaviour close to those points.  >>️

AA << complement the analysis with some numerical simulations showing the interplay between bifurcations of the origin and transitions to chaos of nearby orbits. A key feature is that the observed chaotic regime emerges at low energies. >>
Riccardo Bonetto, Hildeberto Jardón-Kojakhmetov, Christian Kuehn. Networks of Pendula with Diffusive Interactions. arXiv: 2408.02352v1 [math.DS]. Aug 5, 2024.

Also: pendulum, network, transition, chaos, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, pendulum, network, transition, chaos, bifurcation