Translate

Visualizzazione dei post in ordine di data per la query drop. Ordina per pertinenza Mostra tutti i post
Visualizzazione dei post in ordine di data per la query drop. Ordina per pertinenza Mostra tutti i post

venerdì 11 aprile 2025

# gst: apropos of odd droplets; fluids with broken symmetries could self-control their mechanics.

<< Flows with deformable interfaces are commonly controlled by applying an external field or modifying the boundaries that interact with the fluid, (..) Here, (AA) demonstrate that fluids with broken symmetries can self-control their mechanics. (They) demonstrate that odd viscosity dramatically disrupts conventional symmetric spreading by inducing asymmetric deformations and chiral flow patterns. (Their) analysis reveals a variety of dynamic regimes, including leftward and rightward bouncing, as well as rolling, depending on the relative strength of the odd viscosity. >>️

Hugo França, Maziyar Jalaal. Odd Droplets: Fluids with Odd Viscosity and Highly Deformable Interfaces. arXiv: 2503.21649v1 [cond-mat.soft]. Mar 27, 2025.

Also: drop, droplet, droploid, chiral, bouncing, rolling, slipping, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, chirality, bouncing, rolling, slipping, oddity, odd viscosity, self-control

martedì 25 marzo 2025

# gst: droplet bag formation in turbulent airflows.


AA << present numerical simulations investigating the evolution of liquid droplets into baglike structures in turbulent airflows. The droplet bag breakup problem is of significance for many multiphase processes in scientific and engineering applications. Turbulent fluctuations are introduced synthetically into a mean flow, and the droplet is inserted when the air-phase turbulence reaches a statistically stationary state. The morphological evolution of the droplet under different turbulence configurations is retrieved and analyzed in comparison with laminar aerobreakup results. While the detailed evolution history of individual droplets varies widely between different realizations of the turbulent flow, common dynamic and morphological evolution patterns are observed. >>

<< The presence of turbulence is found to enhance the drag coefficient of the droplet as it flattens. At late times, the droplet becomes tilted and increasingly corrugated under strong turbulence intensity. (AA) quantify these phenomena and discuss their possible governing mechanisms associated with turbulence intermittency. >>

<< Lastly, the influences of liquid-gas viscosity ratio are examined and the implications of air-phase turbulence on the later bag film breakup process are discussed. >>️

Kaitao Tang, Thomas A. A. Adcock, Wouter Mostert. Droplet bag formation in turbulent airflows. Phys. Rev. Fluids 10, 033604. March 19, 2025.

Also: drop, droplet, droploid, turbulence, fluctuations, intermittency, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, turbulence, fluctuations, intermittency

sabato 8 marzo 2025

# gst: 'jazzy' intermittency, its onset and multiscaling in active turbulence.

<< Recent results suggest that highly active, chaotic, nonequilibrium states of living fluids might share much in common with high Reynolds number, inertial turbulence. (AA) now show, by using a hydrodynamical model, the onset of intermittency and the consequent multiscaling of Eulerian and Lagrangian structure functions as a function of the bacterial activity. (Their) results bridge the worlds of low and high Reynolds number flows as well as open up intriguing possibilities of what makes flows intermittent. >>️

AA << believe that (Their) work significantly understands the dynamics of dense bacterial suspensions in ways which isolates the truly turbulent effects from those stemming from simpler chaotic motion. More intriguingly, and at a broader conceptual framework, this study yet again underlines that intermittency can be an emergent phenomena in flows where the nonlinearity does not, trivially, dominate the viscous damping. Indeed, there is increasing evidence of intermittency emerging in systems which are not turbulent in the classical sense. Examples include flows with modest Reynolds number of∼O(10e2) showing intermittent behaviour characteristic of high Reynolds turbulence, self-propelling active droplets with intermittent fluctuations, active matter systems of self-propelled particles, which undergo a glass transition, with an intermittent phase before dynamical arrest, and perhaps most pertinently, in elastic turbulence. Thus, (AA) believe, (Their) work will contribute further to understanding what causes flows to turn intermittent. Answers to such questions will also help in understanding fundamental questions in high Reynolds number turbulence. >>️

Kolluru Venkata Kiran, Kunal Kumar, et al. Onset of Intermittency and Multiscaling in Active Turbulence. Phys. Rev. Lett. 134, 088302. Feb 28, 2025. 

Also: intermittency, transition, fluctuations, drop, droplet, droploid, elastic, turbulence, chaos, jazz, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, intermittency, transitions, fluctuations, drops, droplets, droploids, elasticity, turbulence, chaos, jazz


venerdì 14 febbraio 2025

# gst: rise and fall of a multicomponent droplet in a surrounding fluid along a bumpy path.


<< The coupling between mass transfer and hydrodynamic phenomena in two-phase flow is not straightforward due to the different effects that can be encountered. >>

Here, AA << consider the case of a two-component droplet (one miscible and one immiscible in water) released in a 2D rectangular domain filled with water. Mass transfer occurs between the miscible element and the surrounding water, which leads to a density inversion that directly affects the droplet trajectory through buoyancy. >>

Mirantsoa Aime Rasolofomanana, Romain Le Tellier, Herve Henry. Rise and fall of a multicomponent droplet in a surrounding fluid: Simulation study of a bumpy path. Phys. Rev. Fluids 10, 023601. Feb 5, 2025. 

<< the coupling between the flow and the diffusion leads to a significant increase in the magnitude of the upward motion of the droplet before it starts to fall. >>️

arXiv: 2403.20040v2 [physics.flu-dyn]. Dec 18, 2024. 

Also: drop, droplet, droploid, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid 


giovedì 9 gennaio 2025

# gst: equilibrium and breakup regimes of stretched soap bubbles


AA << combine experiments and theoretical derivations to study the evolution of a stretched soap bubble and compare it with an open film to highlight the effect of volume conservation. (They) identify a critical length for both surfaces, beyond which a bottleneck develops in the middle and begins to shrink irreversibly, ultimately pinching off into multiple compartments. >>

<< Before leaving the equilibrium regime, surface energy minimization governs the shape, which can be addressed theoretically via the variational method. In contrast to open films, soap bubble volume conservation introduces a Lagrange multiplier, analogous to a pressure difference, mediating long-range shape evolution. >>

<< By examining how boundary constraints influence deformation, (AA) contrast the bubble's convex-to-concave transition with the behavior of soap films under similar conditions. (Their) analysis of equilibrium and breakup regimes reveals critical differences between bubble and film stability profiles, shedding light on universal behaviors in non-equilibrium fluid mechanics, with implications for biological and material sciences.
>>️

Wei-Chih Li, Chih-Yao Shih, et al. How soap bubbles change shape while maintaining a fixed volume of air? arXiv: 2412.17870v1 [physics.flu-dyn]. Dec 21, 2024. 

Also: bubble, drop, droplet, droploidtransition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, drop, droplet, droploid, transition


sabato 4 gennaio 2025

# gst: floating droplets excited with Faraday waves

<< The Faraday instability has been extensively studied in bounded containers but only recently has research on this phenomenon in flexible domains been conducted. (AA) study floating liquid droplets with Faraday waves excited on their surface, which undergo a slow time evolution toward a stable noncircular shape. (AA) develop a theoretical model for the evolution of the boundary of the droplet, thus allowing to simulate its full transient motion toward steady state. >>

<< By changing the forcing frequency and amplitude of (the) system, (They) observe a variety of stable droplet shapes. (..) Interesting transient behavior such as hysteresis is also discussed, where the final droplet shape depends on its previous shape. Finally, (They) touch upon droplets that do not reach a steady state shape, instead oscillating periodically in time or rotating at a constant angular velocity. >>️

L. Mazereeuw. Theoretical and experimental investigation of the shapes formed by floating droplets excited with Faraday waves. Phys. Rev. Fluids 9, 124404. Dec 19, 2024.

Also: drop, waves, instability, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: drops, droplets, droploids, waves, instability, Faraday instability, transitions   


domenica 8 dicembre 2024

# gst: apropos of puddles, how to design and stabilize a Leidenfrost puddle

<< Leidenfrost puddles exhibit erratic bubble bursts that release vapor trapped beneath the liquid, becoming amorphous and unstable. (AA) report a method to stabilize and design a Leidenfrost puddle. >>

<< When a thin hydrophilic layer with a suitable design is placed over the liquid, the puddle adopts the layer shape due to adhesive forces and becomes stable. (AA) show a variety of puddle designs with the required layer dimensions to avoid vapor accumulation, as well as wetting and buoyancy conditions. >>

<< With the layer, the puddle evaporation rate increases significantly and can be modified by varying the layer dimensions. Finally, an illustrative use of this method in a cooling process is presented. >>️

F. Pacheco-Vázquez, M. Aguilar-González, L. Victoria-García. Designing Leidenfrost Puddles. Phys. Rev. Lett. 133, 234001. Dec 4, 2024. 

Also: drop, bubble, instabilitytransition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drops, bubbles, instability, transition


venerdì 6 dicembre 2024

# gst: anomalous oscillation modes of (superfluid) pendant droplets; horizontal translation on a flat surface, bouncing off at the corner and vertical oscillations at the edge.

<< Droplets should exhibit various dynamical phenomena when adhered to a surface; not all of them are realized in classical fluids. Visualization of superfluid  4^He (helium-4) pendant droplets revealed that the droplets were horizontally translated on a flat surface, bouncing off at the corner, known as the Noether mode that reflects the translation symmetry. >>️

<< The droplets exhibited another mode in vertical oscillations with high amplitude that included oscillation of the droplet edge. The oscillation period remained constant even as the droplets grew, exhibiting an anomalously weak size dependence. The high mobility of the droplet edges owing to the superfluidity was a crucial factor for the appearance of these anomalous modes. >>️

Keita Onodera, Ryuma Nagatomo, et al. Anomalous Oscillation Modes of Superfluid Pendant Droplets. Phys. Rev. Lett. 133, 216001. Nov 19, 2024.

Also: drop, droplet, droploid, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, transition


mercoledì 4 dicembre 2024

# life: apropos of saliva healers, herd immunity revisited and now hypothetically approachable even within NIH

<< President-elect Donald Trump is tapping Dr. Jay Bhattacharya, a Stanford University health researcher, to be the next director of the National Institutes of Health (NIH). >>
<< Bhattacharya was one of three authors of the document (#1). The declaration called for speeding herd immunity by allowing people at low risk to get infected while protecting those most vulnerable, like the elderly. >>

Rob Stein. Trump turns to critic of COVID mandates to run NIH. npr.org. 
Nov 26, 2024. 

<< The most compassionate approach that balances the risks and benefits of reaching herd immunity, is to allow those who are at minimal risk of death to live their lives normally to build up immunity to the virus through natural infection, while better protecting those who are at highest risk. We call this Focused Protection. >>
(#1) - Martin Kulldorff, Sunetra Gupta, Jay Bhattacharya. Great Barrington Declaration. Oct 4, 2020. https://gbdeclaration.org/

FonT
From my point of view 'herd immunity'  can be engineered if and only if, even in the case of sars-covid-19 or flu, simultaneous protection is used with an effective, easy available, antiviral drug.

In this regard, a non-compassionate but logical easy approach could be the indirect inhalation of alcohol ~70% already at the first signs of rhinorrhea, as follows:

(-) start self-treatment (spray plus cotton mask):

(-) outcomes

Ultimately, here it could hypothesize a case of historic, singular checkmate of 'one against all'. Anzicheforse?

Also: drop, saliva, sars* covid* (aka 1or2achoos), virus, ethno, Mr. Donald, POTUS, tit-for-tat, game, in https://www.inkgmr.net/kwrds.html 

Keywords: life, drop, saliva, saliva healers, herd immunity, sars, mers, 2019ncov, sarscov2, covid19, coronavirus, 1or2achoos, virus, ethno, ethnomedicine, Donald, POTUS, tit-for-tat, game

PS: I couldn't say why, but in certain contexts, the incipit of an answer that the physicist Enrico Fermi https://it.m.wikipedia.org/wiki/Enrico_Fermi  gave to a journalist always comes back to my mind: 'the physics that is done in our laboratory ...' . 

An example of exceptional, clear, even poetic analysis and synthesis skills (in only 8 words).


lunedì 25 novembre 2024

# gst: apropos of dances, drops that dance following snake- and ouroboros-shaped trajectories on lubricated surfaces.


<< Recently, (AA) observed a curious breath figure pattern when water condenses on solid surfaces coated with a thin lubricant oil film. Water drops of various sizes, ranging from tens of microns to several millimetres, start to perform a self-avoiding, serpentinelike dance. As the drop moves, it consumes smaller droplets along its path, converting interfacial energy into kinetic energy to sustain its motion. These self-avoiding drops preferentially avoid crossing their own paths as well as the paths of other drops; they can only intersect their previous paths once sufficient recondensation has occurred. This self-avoiding behavior arises because the previous path (..) contains little to no water content to fuel self-propulsion, so the drops continually seek areas with higher local water content. >>️

<< This intricate serpentine dance is driven by short-range interactions between droplets, mediated by overlapping menisci, similar to the Cheerios effect. Remarkably, long-range order spontaneously emerges from these short-range interactions, with the collective motion exhibiting self-similarity—breath figure patterns appear roughly similar across different scales. >>

<< The serpentine motions of the drops, which can span distances many times their diameters, eventually deplete the local lubricant film, causing a transition from serpentine to circular motion. This circular motion can be seen as a unique form of serpentine motion occurring in lubricant-poor regions. As the drops move, they continually redistribute the lubricant across the substrate, leading to a dynamic interplay between serpentine and circular motions. This ongoing redistribution can be visualized by illuminating the surface with diffused white light and capturing the resulting interference patterns with a digital camera. Variations in lubricant thickness produce different hues, creating a vibrant, colorful canvas and an intricate dance floor for the condensing drops. >>️

<< The phenomenon described in (AA) paper represents a fascinating example of active matter driven by condensation, rather than the more commonly observed chemical reactions or Marangoni effects. >>

Marcus Lin, Fauzia Wardani, Dan Daniel. Dancing drops on lubricated surfaces. Phys. Rev. Fluids 9, 110504. Nov 22, 2024.

Marcus Lin, Solomon Adera, Joanna Aizenberg, Yao Xi, Dan Daniel. V0030: Serpents and Ouroboros: Emergent collective motion of condensate droplets. 76th Annual Meeting of the APS Division of Fluid Dynamics. Nov 19-21, 2023.

Also: drop, droplet, droploid, dance, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, dance


lunedì 11 novembre 2024

# gst: apropos of bubbles, the case of bubbles collapsing near a wall.


AA << study examines the pressure exerted by a cavitation bubble collapsing near a rigid wall. A laser-generated bubble in a water basin undergoes growth, collapse, second growth, and final collapse. Shock waves and liquid jets from non-spherical collapses are influenced by the stand-off ratio γ, defined as the bubble centroid distance from the wall divided by the bubble radius. (AA) detail shock mechanisms, such as tip or torus collapse, for various γ values. High-speed and Schlieren imaging visualize the microjet and shock waves. The microjet's evolution is tracked for large γ, while shock waves are captured in composite images showing multiple shock positions. Quantitative analyses of the microjet interface, shock wave velocities, and impact times are reported. Wall-mounted sensors and a needle hydrophone measure pressure and compare with high-speed observations to assess the dominant contributions to pressure changes with γ, revealing implications for cavitation erosion mechanisms. >>️

Roshan Kumar Subramanian, Zhidian Yang, et al. Bubble collapse near a wall. Part 1: An experimental study on the impact of shock waves and microjet on the wall pressure. arXiv: 2408.03479v2 [physics.flu-dyn]. Aug 8, 2024. 

Also: bubble, drop, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, bubble collapse 


giovedì 19 settembre 2024

# gst: vortex structures under dimples and scars in turbulent free-surface flows


<< Turbulence beneath a free surface leaves characteristic long-lived signatures on the surface, such as upwelling 'boils', near-circular 'dimples' and elongated 'scars', easily identifiable by eye, e.g., in riverine flows. >>️

AA << explore the connection between these surface signatures and the underlying vortical structures. We investigate dimples, known to be imprints of surface-attached vortices, and scars, which have yet to be extensively studied, by analysing the conditional probabilities that a point beneath a signature is within a vortex core as well as the inclination angles of sub-signature vorticity. >>️

<< The analysis shows that the likelihood of vortex presence beneath a dimple decreases from the surface down through the viscous and blockage layers in a near-Gaussian manner, influenced by the dimple's size and the bulk turbulence. When expressed as a function of depth over the Taylor microscale λT, this probability is independent of Reynolds and Weber number. >>️

<< Conversely, the probability of finding a vortex beneath a scar increases sharply from the surface to a peak at the edge of the viscous layer, at a depth of approximately λT/4. Distributions of vortical orientation also show a clear pattern: a strong preference for vertical alignment below dimples and an equally strong preference for horizontal alignment below scars. >>️

AA << findings suggest that scars can be defined as imprints of horizontal vortices approximately a quarter of the Taylor microscale beneath the surface, analogous to how dimples can be defined as imprints of surface-attached vertical vortex tubes. >>

Jørgen R. Aarnes, Omer Babiker, et al. Vortex structures under dimples and scars in turbulent free-surface flows. arXiv: 2409.05409v1 [physics.flu-dyn]. 
9 Sep 2024.

Also: vortex, turbulence, waves, bubble, drop, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, vortex, turbulence, waves, bubble, drop, transition


mercoledì 28 agosto 2024

# gst: dynamics of small droplets in turbulent multiphase flows


AA << show unambiguously that the formation of small droplets is governed by the internal dynamics which occurs during the breakup of large drops and that the high vorticity and the extreme dissipation associated to these events are the consequence and not the cause of the breakup. >>️

M. Crialesi-Esposito, G. Boffetta, L. Brandt, et al. How small droplets form in turbulent multiphase flows. Phys. Rev. Fluids 9, L072301. Jul 29, 2024. 

Also: drop, bubble, transition, turbulence, intermittency, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid,  bubble, transition, turbulence, intermittency


giovedì 22 agosto 2024

# gst: spontaneous bouncing, trampolining, and hovering behaviors of a levitating water droplet without constraints.


<< The levitating Leidenfrost (LF) state of a droplet on a heated substrate is often accompanied by fascinating behaviors such as star-shaped deformations, self-propulsion, bouncing, and trampolining. These behaviors arise due to the vapor flow instabilities at the liquid-vapor interface beneath the droplet at sizes typically comparable to the capillary length scale of the liquid. >>

AA << report on the spontaneous bouncing, trampolining, and hovering behavior of an unconstrained LF water droplet. (..) the water droplet exhibits an increase in bouncing height at specific radii with intermittent reduction in the height of bounce leading to a quiescent LF state. The reemergence of the trampolining behavior from the quiescent hovering state without any external forcing is observed at sizes as low as 0.1 times the capillary length. (AA) attribute the droplet bouncing behavior to the dynamics of vapor flow beneath the LF droplet. >>

AA << propose that the trampolining behavior of the droplet at specific radii is triggered by harmonic and subharmonic resonance between the natural frequency of the vapor layer and Rayleigh frequency of the droplet. This proposed mechanism of resonance-driven trampolining of LF droplets is observed to be applicable for different liquids irrespective of the initial volume and substrate temperatures, thus indicating a universality of the behavior. (AA) attribute the intermittent trampolining events to the change in the natural frequency of the droplet and the vapor layer due to evaporative mass loss. >>

Pranjal Agrawal, Susmita Dash. Reemergence of Trampolining in a Leidenfrost Droplet. arXiv: 2408.02335v1 [physics.flu-dyn]. Aug 5, 2024. 


Keywords: gst, drop, droplet, droploid, behav, behaviour


martedì 30 luglio 2024

# gst: collapse of a toroidal bubble inducing shock waves

<< When bubbles collapse near a wall, they typically experience an asymmetric deformation. This collapse leads to the creation of a jet that strikes the bubble interface, causing the formation of a toroidal bubble and the subsequent release of a water-hammer shock. >>️

AA << findings demonstrate that shock waves emitted from the toroidal bubble consistently propagate toward the central axis of the torus, resulting in significant pressure shocks along the axis, similar to the water-hammer shock formed during the collapse of a spherical bubble. >>️

<< In contrast, weak pressure waves are generated in the transverse directions, leading to relatively weaker pressure peaks. Furthermore, the wall-pressure peak induced by the toroidal bubble is approximately three times higher than that induced by the spherical bubble. >>️

Cheng Liu, Xiaobin Yang, et al. Investigations on the shock wave induced by collapse of a toroidal bubble. Phys. Rev. E 110, 015103. Jul 16, 2024. 

Also: bubble, drop, waves, collapse, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, drop, waves, collapse


lunedì 24 giugno 2024

# gst: buckling instability in a chain of sticky bubbles


<< A slender object undergoing an axial compression will buckle to alleviate the stress. Typically the morphology of the deformed object depends on the bending stiffness for solids, or the viscoelastic properties for liquid threads. >>️

AA << study a chain of uniform sticky air bubbles that rise due to buoyancy through an aqueous bath. A buckling instability of the bubble chain with a characteristic wavelength is observed.  >>️

<< If a chain of bubbles is produced faster than it is able to rise, the dominance of viscous drag over buoyancy results in a compressive stress that is alleviated by buckling the bubble chain. >>️

<< Unlike other systems, in which buckling arises from a cost associ­ated with bending, to our knowledge this is the first study of drag-induced buckling with no intrinsic cost to bending—a buckling instability with a characteristic lengthscale emerges as a result of hydrodynamics. >>
Carmen L. Lee and Kari Dalnoki-Veress. Buckling instability in a chain of sticky bubbles. Phys. Rev. Research 6, L022062. Jun 14, 2024. 

Also: bubble, instability, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, instability, drop, droplet, droploid, transition 


lunedì 17 giugno 2024

# gst: breakup of Janus droplet in a bifurcating microchannel

<< Droplet breakup is frequently observed in natural and industrial processes (..)  Although valuable insights on the breakup mechanisms of single-phase droplets in microchannels have been provided over the past decades, the breakup physics of complex emulsions is still poorly understood. >>️

<< Spatially asymmetric Janus microdroplets, distinct from single-phase or double emulsion droplets possessing one uniform interface with the ambient phase, are anticipated to show unique breakup behaviors, which has not been explored.  >>️

AA << conduct both microfluidic experiments and three-dimensional lattice Boltzmann simulations to investigate the dynamic breakup of ionic liquid (IL)-water Janus droplets in an assembled 3D-printed microchannel with a bifurcation. >>️

<< Three different flow regimes are identified: (i) division into two daughter Janus droplets, (ii) breakup into a single-phase droplet and a smaller Janus droplet, and (iii) nonbreakup.  >>️

AA << find that the strong constraint effect of the main channel and large Ca_av (average capillary numbers) values are essential to the symmetrical breakup of Janus droplets. The tunnel between the mother droplet and the wall of the main channel, which allows the lateral shift of the Janus droplet, and moderate flow rates facilitate the breakup of the IL single-phase portion of Janus droplets.  >>

<< Through 90° rotation of the splitting microchannel, (AA) elucidate the distinctions in Janus droplet behaviors under two baffle orientations. Potential impacts of the oblique flow characteristic of [bmim]⁢Fe⁢Cl4-water Janus droplets on the droplet breakup are discussed. >>️
Hao Wang, Shiteng Wang, et al. Dynamic breakup of Janus droplet in a bifurcating microchannel. Phys. Rev. Fluids 9, 064203. Jun 11, 2024. 


Also: 'drop', 'droplet', 'droploid', in https://www.inkgmr.net/kwrds.html 

Keywords: gst, Janus, drop, droplet, droploid



mercoledì 10 aprile 2024

# gst: exploring the on-demand dynamical generation of a plethora of dispersive shock waves arising in attractive one-dimensional droplet-bearing environment.

AA << demonstrate the controllable generation of distinct types of dispersive shock-waves emerging in a quantum droplet bearing environment with the aid of step-like initial conditions. Dispersive regularization of the ensuing hydrodynamic singularities occurs due to the competition between meanfield repulsion and attractive quantum fluctuations. This interplay delineates the dominance of defocusing (hyperbolic) and focusing (elliptic) hydrodynamic phenomena respectively being designated by real and imaginary speed of sound. >>

<< Surprisingly, dispersive shock waves persist across the hyperbolic-to-elliptic threshold, while a plethora of additional wave patterns arise, such as rarefaction waves, traveling dispersive shock waves, (anti)kinks and droplet wavetrains. >>

AA << results pave the way for unveiling a multitude of unexplored coherently propagating waveforms in such attractively interacting mixtures. >>

Sathyanarayanan Chandramouli, Simeon I. Mistakidis, Garyfallia C. Katsimiga, Panayotis G. Kevrekidis. 
Dispersive shock waves in a one-dimensional droplet-bearing environment. arXiv: 2404.02998v2 [nlin.PS]. Apr 5, 2024. 

Also: waves, drop, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, waves, drops 


lunedì 8 aprile 2024

# gst: apropos of evaporation, puncturing of active drops

<< By virtue of self-propulsion, active particles impart intricate stresses to the background fluids. (..) this active stress can be utilized to greatly control evaporation dynamics of active drops. >>

AA << discover a new phenomenon of puncturing of the active drops, where the air-liquid interface of the drop undergoes spontaneous tearing and there occurs a formation of a new three-phase contact line due to the liquid-air interface hitting the liquid-solid interface through evaporation-driven mass loss. Post puncturing, (AA) see an inside-out evaporation of the drop, where the new contact line sweeps towards the pinned outer contact line of the drops, contrasting regular drops that straightaway shrink to zero volume with self-similar shape. >>

<< Furthermore, (..) the activity inside the drops can manipulate the three-phase contact-line dynamics, which for contractile drops can result in an up to 50% enhanced lifetime of the drop and 33% quicker evaporation for extensile drops. By analyzing the flux distribution inside the drop, (AA) gain insights on nonintuitive deposition patterns (e.g., ring galaxy type deposits that demonstrate controllable spatial gradients in the concentrations of the deposited particles) of active particles, which are oftentimes biological substances or bimetallic nanoparticles of interest. >>

Ghansham Rajendrasingh Chandel, Vishal Sankar Sivasankar, Siddhartha Das. Evaporation of active drops: Puncturing drops and particle deposits of ring galaxy patterns. Phys. Rev. Fluids 9, 033603. Mar 27, 2024. 

Also: drop, particle, evaporation, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, particle, evaporation, transition, drop interactions, droplet, droploid


venerdì 22 marzo 2024

# gst: rearrangements of a jammed 2-D emulsion (during slow compression).

<< As amorphous materials get jammed, both geometric and dynamic heterogeneity are observed. (AA)  investigate the correlation between the local geometric heterogeneity and local rearrangements in a slowly compressed bidisperse quasi-two-dimensional emulsion system. The compression is driven by evaporation of the continuous phase. >>

<< droplets in heterogeneous local regions are more likely to have local rearrangements. These rearrangements are generally T1 events where two droplets converge toward a void, and two droplets move away from the void to make room for the converging droplets. Thus, the presence of the voids tends to orient the T1 events. >>️

<< The presence of a correlation between the structural quantities and the rearrangement dynamics remains qualitatively unchanged over the entire range of packing fractions observed. >>️

Xin Du, Eric R. Weeks. Rearrangements during slow compression of a jammed  two-dimensional emulsion. Phys. Rev. E 109, 034605. Mar 20,  2024.


Keywords: drops, droplets, droploids