Translate

Visualizzazione dei post in ordine di data per la query edge. Ordina per pertinenza Mostra tutti i post
Visualizzazione dei post in ordine di data per la query edge. Ordina per pertinenza Mostra tutti i post

lunedì 28 aprile 2025

# life: trace the rise and fall of inequality in China (over 5,000 years)

<< The rise and fall of inequality in the west has been studied in detail by eminent economists such as Simon Kuznets and Thomas Piketty. But China offers a chance to go much further back in time, having maintained a unified identity and unique language for more than 5,000 years – as well as some extraordinarily detailed dynastic archives. >>

<< Using these, a team of economists including the author of (Their) latest Insights long read, Peng Zhou from Cardiff University, set out to trace the impact of technological advances – from the revolutionary iron plough to block printing and imperial exams – on inequality in China’s imperial dynasties spanning two millennia. >>

<< Their conclusions have some fascinating implications for today’s technological panic over the rise of AI. As we stand at the edge of this latest technological cliff, history whispers: “Calm down. You’ve been here before.” >>

Mike Herd. The Daily. theconversation.com. UK Edition. Apr 25, 2025.

Peng Zhou. What 2,000 years of Chinese history reveals about today’s AI-driven technology panic – and the future of inequality. theconversation.com. Apr 24, 2025.

Also: Are you ready for all this?  in https://www.inkgmr.net/kwrds.html 

Keywords: life, oops, are you ready for all this

sabato 12 aprile 2025

# gst: chaotic and time-periodic edge states in square duct flow.


AA << analyse the dynamics within the stability boundary between laminar and turbulent square duct flow with the aid of an edge-tracking algorithm. As for the circular pipe, the edge state turns out to be a chaotic attractor within the edge if the flow is not constrained to a symmetric subspace. The chaotic edge state dynamics is characterised by a sequence of alternating quiescent phases and regularly occurring bursting episodes. These latter reflect the different stages of the well-known streak-vortex interaction in near-wall turbulence: the edge states feature most of the time a single streak with a number of flanking quasi-streamwise vortices attached to one of the four surrounding walls. The initially straight streak undergoes the classical linear instability and eventually breaks in an intense bursting event due to the action of the quasi-streamwise vortices. At the same time, the vortices give rise to a new generation of low-speed streaks at one of the neighbouring walls, thereby causing the turbulent activity to `switch' from one wall to the other. >>

<< When restricting the edge dynamics to a single or twofold mirror-symmetric subspace, on the other hand, the outlined bursting and wall-switching episodes become self-recurrent in time. These edge states thus represent the first periodic orbits found in the square duct. In contrast to the chaotic edge states in the non-symmetric case, the imposed symmetries enforce analogue bursting cycles to simultaneously appear at two parallel opposing walls in a mirror-symmetric configuration. Both localisation of the turbulent activity to one or two walls and wall switching are shown to be a common phenomenon in low Reynolds number duct turbulence. (They) therefore argue that the marginally turbulent trajectories transiently visit the identified edge states during these episodes, so that the edge states become actively involved in the turbulent dynamics. >>️

Markus Scherer, Markus Uhlmann, Genta Kawahara. Chaotic and time-periodic edge states in square duct flow. arXiv: 2503.22519v1 [physics.flu-dyn]. Mar 28, 2025️. 

Also: turbulence, chaos, vortex, instability, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, turbulence, duct turbulence, chaos, chaotic edge states, vortex, instability, wall-switching episodes, bursting cycles 

mercoledì 9 aprile 2025

# gst: conventional and anomalous mobility edges in a quasiperiodic chain.

<< Mobility edges (MEs) constitute the energies separating the localized states from the extended ones in disordered systems. Going beyond this conventional definition, recent proposal suggests for an ME which separates the localized and multifractal states in certain quasiperiodic systems - dubbed as the anomalous mobility edges (AMEs). >>

<< In this study, (AA) propose an exactly solvable quasiperiodic system that hosts both the conventional and anomalous mobility edges under proper conditions. (They) show that with increase in quasiperiodic disorder strength, the system first undergoes a delocalization to localization transition through an ME of conventional type. >>

<< Surprisingly, with further increase in disorder, (They) obtain that a major fraction of the localized states at the middle of the spectrum turn multifractal in nature. Such unconventional behavior in the spectrum results in two AMEs, which continue to exist even for stronger quasiperiodic disorder. >>

AA << numerically obtain the signatures of the coexisting MEs complement it through analytical derivation using Avila's global theory. In the end (They) provide important signatures from the wavepacket dynamics. >>️

Sanchayan Banerjee, Soumya Ranjan Padhi, Tapan Mishra. Emergence of distinct exact mobility edges in a quasiperiodic chain. arXiv: 2503.19834v1 [cond-mat.quant-gas]. Mar 25, 2025.️

Also: edge, order, disorder, waves, transition,  in https://www.inkgmr.net/kwrds.html 

Keywords: gst, edge, order, disorder, waves, transition 

mercoledì 12 marzo 2025

# gst: tandem droplets accelerated by continuous uniform airflow.

<< In a dense droplet environment, droplets influence each other's motion, deformation, and breakup behavior. The tandem droplet is a particularly relevant case for the study of its unsteady dynamic behavior. >>

<< A three-dimensional numerical simulation study was conducted to investigate the deformation process of tandem droplets under different conditions. >>

<< The results of the research show that under conditions of high density ratio and a significant Reynolds number, the edge morphological characteristics of droplets are predominantly influenced by the Rayleigh-Taylor instability. In the case of low density ratios, the pressure drag force on the leeward side exerts a dominant influence on the accelerated motion of the leading droplet. The shape of the droplet is significantly influenced by the vortex ring present in the recirculation region. The perturbation of the liquid edge induces the vortex ring to split into secondary vortex rings, which act back on the droplet, thereby affecting its morphological characteristics. The trailing droplet is subject to a reduction in cross-flow radius, drag coefficient, minimum length, and expansion speed of the liquid bag due to the influence of the wake of the leading droplet. The decrease in Reynolds number and relative distance leads to a stronger suppression effect, while the decrease in density ratio shortens the length of the recirculation region, thereby weakening the suppression of trailing droplets. >>

Shuting Peng, Fuzhen Chen, et al. Three-dimensional numerical simulation of tandem droplets accelerated by continuous uniform airflow. Phys. Rev. Fluids 10, 024304. Feb 25, 2025. 

Also: droplet, instability, vortex, behav, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, droplet, instability, vortex, behavior

giovedì 20 febbraio 2025

# gst: friction-induced bubble edge curvature in flowing 2D confined foams

AA << investigate the flow of quasi-2D liquid foams, composed of a single monolayer of bubbles in close contact and confined between two glass plates in a Hele-Shaw cell, with a specific emphasis on understanding how bubble shapes evolve in response to varying flow speeds. Utilizing an experimental setup capable of displacing a substantial number of bubbles in the spanwise direction, while the bubble shapes remain stationary as the bubbles themselves are advected in a plug flow, (They) reveal an average bubble anisotropy characterized by elongated bubbles in the streamwise direction and curved bubble edges in a preferential orientation. >>

<< Notably, these effects intensify with increasing flow speeds. While the bubble anisotropy is created at the entrance of the cell, (AA) study establishes a clear connection between bubble edge curvature and orientation, confinement thickness, frictional forces with the plates, and the inherent anisotropy of the bubbles. >>

Christophe Raufaste, Lauren Rose, et al. Friction-induced bubble edge curvature in flowing two-dimensional confined foams. Phys. Rev. Fluids 10, 023301. Feb 5, 2025. 

Also: bubble, foam, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, bubble, foam, friction, surface tension

martedì 28 gennaio 2025

# gst: tuning to the edge of instability (in the cochlea)


<< Sound produces surface waves along the cochlea's basilar membrane. To achieve the ear's astonishing frequency resolution and sensitivity to faint sounds, dissipation in the cochlea must be canceled via active processes in hair cells, effectively bringing the cochlea to the edge of instability. But how can the cochlea be globally tuned to the edge of instability with only local feedback? >>

<< Surprisingly, (AA) find the basilar membrane supports two qualitatively distinct sets of modes: a continuum of localized modes and a small number of collective extended modes. Localized modes sharply peak at their resonant position and are largely uncoupled. As a result, they can be amplified almost independently from each other by local hair cells via feedback reminiscent of self-organized criticality. >>

<< However, this amplification can destabilize the collective extended modes; avoiding such instabilities places limits on possible molecular mechanisms for active feedback in hair cells. >>

AA << work illuminates how and under what conditions individual hair cells can collectively create a critical cochlea. >>️

Asheesh S. Momi, Michael C. Abbott, et al. Hair Cells in the Cochlea Must Tune Resonant Modes to the Edge of Instability without Destabilizing Collective Modes. PRX Life 3, 013001. Jan 2, 2025.

Also: sound, music, pause, silence, instability, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, acoustics, bifurcations, sensory processes, sound detection, auditory system, ear, criticality, self-organized criticality, sound, music, pause, silence, instability


venerdì 6 dicembre 2024

# gst: anomalous oscillation modes of (superfluid) pendant droplets; horizontal translation on a flat surface, bouncing off at the corner and vertical oscillations at the edge.

<< Droplets should exhibit various dynamical phenomena when adhered to a surface; not all of them are realized in classical fluids. Visualization of superfluid  4^He (helium-4) pendant droplets revealed that the droplets were horizontally translated on a flat surface, bouncing off at the corner, known as the Noether mode that reflects the translation symmetry. >>️

<< The droplets exhibited another mode in vertical oscillations with high amplitude that included oscillation of the droplet edge. The oscillation period remained constant even as the droplets grew, exhibiting an anomalously weak size dependence. The high mobility of the droplet edges owing to the superfluidity was a crucial factor for the appearance of these anomalous modes. >>️

Keita Onodera, Ryuma Nagatomo, et al. Anomalous Oscillation Modes of Superfluid Pendant Droplets. Phys. Rev. Lett. 133, 216001. Nov 19, 2024.

Also: drop, droplet, droploid, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, transition


venerdì 22 novembre 2024

# gst: protected chaos in a topological lattice.

<< The erratic nature of chaotic behavior is thought to erode the stability of periodic behavior, including topological oscillations. However, (AA) discover that in the presence of chaos, non-trivial topology not only endures but also provides robust protection to chaotic dynamics within a topological lattice hosting non-linear oscillators. >>

<< Despite the difficulty in defining topological invariants in non-linear settings, non-trivial topological robustness still persists in the parametric state of chaotic boundary oscillations. (AA) demonstrate this interplay between chaos and topology by incorporating chaotic Chua's circuits into a topological Su-Schrieffer-Heeger (SSH) circuit. >>

<< By extrapolating from the linear limit to deep into the non-linear regime, (AA) find that distinctive correlations in the bulk and edge scroll dynamics effectively capture the topological origin of the protected chaos. (Their)  findings suggest that topologically protected chaos can be robustly achieved across a broad spectrum of periodically-driven systems, thereby offering new avenues for the design of resilient and adaptable non-linear networks. >>️

Haydar Sahin, Hakan Akgün, et al. Protected chaos in a topological lattice. arXiv: 2411.07522v1 [cond-mat.mes-hall]. Nov 12, 2024.

Also: chaos, random, instability, transition, network, ai (artificial intell), in https://www.inkgmr.net/kwrds.html 

Keywords: gst, chaos, random,  instability, transition, network, AI, Artificial Intelligence


sabato 2 novembre 2024

# gst: apropos of noise-assisted phenomena, self-organized transport in noisy dynamic networks.

AA << present a numerical study of multicommodity transport in a noisy, nonlinear network. The nonlinearity determines the dynamics of the edge capacities, which can be amplified or suppressed depending on the local current flowing across an edge. (AA) consider network self-organization for three different nonlinear functions: For all three (They) identify parameter regimes where noise leads to self-organization into more robust topologies, that are not found by the sole noiseless dynamics. Moreover, the interplay between noise and specific functional behavior of the nonlinearity gives rise to different features, such as (i) continuous or discontinuous responses to the demand strength and (ii) either single or multistable solutions. (AA) study shows the crucial role of the activation function on noise-assisted phenomena. >>️

Frederic Folz, Kurt Mehlhorn, Giovanna Morigi. Self-organized transport in noisy dynamic networks. Phys. Rev. E 110, 044310. Oct 21, 2024. 

Also: network, noise, behavior, self-assembly, instability, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, network, noise, behavior, self-assembly, stability 


giovedì 19 settembre 2024

# gst: vortex structures under dimples and scars in turbulent free-surface flows


<< Turbulence beneath a free surface leaves characteristic long-lived signatures on the surface, such as upwelling 'boils', near-circular 'dimples' and elongated 'scars', easily identifiable by eye, e.g., in riverine flows. >>️

AA << explore the connection between these surface signatures and the underlying vortical structures. We investigate dimples, known to be imprints of surface-attached vortices, and scars, which have yet to be extensively studied, by analysing the conditional probabilities that a point beneath a signature is within a vortex core as well as the inclination angles of sub-signature vorticity. >>️

<< The analysis shows that the likelihood of vortex presence beneath a dimple decreases from the surface down through the viscous and blockage layers in a near-Gaussian manner, influenced by the dimple's size and the bulk turbulence. When expressed as a function of depth over the Taylor microscale λT, this probability is independent of Reynolds and Weber number. >>️

<< Conversely, the probability of finding a vortex beneath a scar increases sharply from the surface to a peak at the edge of the viscous layer, at a depth of approximately λT/4. Distributions of vortical orientation also show a clear pattern: a strong preference for vertical alignment below dimples and an equally strong preference for horizontal alignment below scars. >>️

AA << findings suggest that scars can be defined as imprints of horizontal vortices approximately a quarter of the Taylor microscale beneath the surface, analogous to how dimples can be defined as imprints of surface-attached vertical vortex tubes. >>

Jørgen R. Aarnes, Omer Babiker, et al. Vortex structures under dimples and scars in turbulent free-surface flows. arXiv: 2409.05409v1 [physics.flu-dyn]. 
9 Sep 2024.

Also: vortex, turbulence, waves, bubble, drop, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, vortex, turbulence, waves, bubble, drop, transition


mercoledì 3 aprile 2024

# gst: elastomers fail from the edge.



<< The performance of soft devices is limited by the fracture resistance of elastomers. (..) A key observation is that thicker elastomers can be significantly tougher than thinner ones. (AA) show that this surprising toughness enhancement in thick samples emerges from the 3D geometry of the fracture process. In contrast to the classical picture of a 2D crack, failure is driven by the growth of two separate “edge” cracks that nucleate early on at a sample’s sides. As loading is increased, these cracks propagate in towards the sample midplane. When they merge, samples reach their ultimate failure strength. In thicker samples, edge cracks need to propagate farther before meeting, resulting in increased sample toughness. (AA) demonstrate that edge-crack growth is controlled by the elastomer’s strain-stiffening properties. >>
Nan Xue, Rong Long, Eric R. Dufresne, Robert W. Style. Elastomers Fail from the Edge. Phys. Rev. X 14, 011054. March 22, 2024. 

Also: elastic, crack, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, elastic, crack, elastomers, fracture


giovedì 15 febbraio 2024

# gst: droplets scoot like caterpillars.

<< From swells in an ocean to ripples in a puddle, the shearing effect of wind blowing over a liquid is visible at all scales. This shear determines the interactions between Earth’s atmosphere and its surface water and, researchers now explain, the movement of liquid droplets that crawl up and down the window of a moving car in the rain. In a series of experiments, (AA) show that airflow triggers surface waves that cause such droplets to crawl like caterpillars before they break apart. >>️

<< At first, the airflow across the droplet’s surface caused the droplet to extend into an oval shape. The droplet also began to tilt, with the liquid piling up at the droplet’s downwind edge. When the drag force exerted by the airflow overcame the capillary force between the glycerin and the glass, the droplet began to slide and to stretch out even more. Surface waves then developed on the elongated droplet and traveled toward its leading edge. The waves induced a stable caterpillar-like motion, with the droplet stretching and contracting along its length. Eventually, beyond a threshold length that depended on the droplet’s volume, the caterpillar was no longer able to withstand the shearing force and broke into several droplets. >>️

AA << say that the behavior follows the same pattern as that of an elongated droplet sliding along an incline. >>
Rachel Berkowitz. Droplets Scoot Like Caterpillars. Physics 16, s110. Sep 1, 2023.

A. Chahine, J. Sebilleau, R. Mathis, D. Legendre. Caterpillar like motion of droplet in a shear flow. Phys. Rev. Fluids 8, 093601. Sep 1, 2023.

Also: drop, bubble, transition, in https://www.inkgmr.net/kwrds.html 

Keywords: gst, drop, droplet, droploid, bubble, transition


venerdì 1 dicembre 2023

# life: POTUS race 2024, Native voters could make a difference


<< There are predicted to be at least 5 million Native and Alaska Native-identifying voters in the U.S. in both rural and urban communities, according to the U.S. Census Bureau — although estimates are expected to be an undercount. >>️

<< Native Americans are incredibly influential and have the ability to really swing those elections on the margins, >> Jacqueline De Leon.

<< Hanging in the balance is control of House, Senate and the Oval Office in 2024. In a country in which turnout can make or break campaigns, organizers said courting Native voters can dictate a candidate's success. (..) Organizers argue Native voters are increasingly a coalition to watch, even if parties have not fully recognized them yet. (..) Here are some of the states where Native voters could have a significant impact on 2024 races for Congress, the Senate and for president. >>️️

Ximena Bustillo. Sometimes overlooked by campaigns, Native voters could decide major elections in 2024. NPR. Nov 21, 2023. 




Also: margine, in Notes (quasi-stochastic poetry) https://inkpi.blogspot.com/search?q=margine

Keywords: potus, potus race, Native, Native voters, life, transition, edge, margin


mercoledì 20 settembre 2023

# gst: apropos of collisions of a vortex dipoles, vortex unbinding, vortex pinning to the edge, and emission of rarefaction pulses.

<< Vortices and dark solitons are fundamental defects that appear in nonlinear physics at all scales, from nonlinear optics to cosmic fluids. In two or three dimensions, dark solitons are fundamentally connected to highly ordered vortex states through an intrinsic modulation instability in the surrounding matter. >>️

<< Here, [AA] report an experimental realization of ring dark soliton (RDS)  generation in a two-dimensional atomic superfluid trapped in a circular box. By quenching the confining box potential, [they] observe an RDS emitted from the edge and its peculiar signature in the radial motion. As an RDS evolves, [they] observe transverse modulations at discrete azimuthal angles, which clearly result in a patterned formation of a circular vortex dipole array. Through collisions of the vortex dipoles with the box trap, [they] observe vortex unbinding, vortex pinning to the edge, and emission of rarefaction pulses. >>

Hikaru Tamura, Cheng-An Chen, Chen-Lung Hung. Observation of Self-Patterned Defect Formation in Atomic Superfluids–from Ring Dark Solitons to Vortex Dipole Necklaces. Phys. Rev. X 13, 031029. Sep 14, 2023. 

Also: soliton, vortex, turbulence, waves, in: https://www.inkgmr.net/kwrds.html  

Keywords: gst, soliton, dark soliton, vortex, turbulence, waves. 


mercoledì 5 luglio 2023

# brain: spiral waves at the edge of neural tissue during cognitive processing.


AA << have discovered human brain signals travelling across the outer layer of neural tissue that naturally arrange themselves to resemble swirling spirals. >>️

<< The research (..) indicates these ubiquitous spirals, which are brain signals observed on the cortex during both resting and cognitive states, help organise brain activity and cognitive processing. >>️

<< Our study suggests that gaining insights into how the spirals are related to cognitive processing could significantly enhance our understanding of the dynamics and functions of the brain, (..) These spiral patterns exhibit intricate and complex dynamics, moving across the brain’s surface while rotating around central points known as phase singularities. >> Pulin Gong.

<< One key characteristic of these brain spirals is that they often emerge at the boundaries that separate different functional networks in the brain, >> Yiben Xu. 

Philip Ritchie. Scientists discover spiral-shaped signals that organise brain activity. sydney.edu.au. Jun 16, 2023. 


Yiben Xu, Xian Long, Jianfeng Feng & Pulin Gong. Interacting spiral wave patterns underlie complex brain dynamics and are related to cognitive processing. Nat Hum Behav. doi: 10.1038/ s41562-023-01626-5. Jun 15,  2023.

Also: brain, vortex, waves in: https://www.inkgmr.net/kwrds.html

Keywords: brain, vortex, waves,  cognition




lunedì 3 luglio 2023

# gst: a flapping forward flight (among Papilio polytes and Kallima inachus)


<< The effect of wing shape on a forward-flying butterfly via decoupled factors of the wing-swept angle and the aspect ratio (AR) was investigated numerically. >>️

<< The results show that, through (AA) models, the effects of the wing-swept angle and AR were decoupled; both have distinct flow mechanisms and aerodynamic force trends and are consistent in the two butterfly species (Papilio polytes and Kallima inachus). For a fixed AR, a backward-swept wing increases lift and drag because of the enhanced attachment of the leading-edge vortex with increased strength of the wingtip vortex and the spanwise flow. For a fixed wing-swept angle, a small AR wing increases lift and decreases drag because of the large region of low pressure downstream and the wake-capture effect. Coupling these effects, the largest lift-to-drag ratio occurs for a forward-swept wing with the smallest AR. These results indicate that, in a flapping forward flight, sweeping a forewing forward relative to a hindwing is suitable for cruising. >>

Sheng-Kai Chang, You-Jun Lin, Kuan-Lun Hsu, and Jing-Tang Yang. Decoupling wing-shape effects of wing-swept angle and aspect ratio on a forward-flying butterfly. Phys. Rev. E 107, 065105. Jun 23, 2023. 

Keywords: gst, butterfly, wing, wing-shape, flight, vortex





sabato 13 maggio 2023

# gst: the robustness of a edge spiking.


<< Excitable media, ranging from bioelectric tissues and chemical oscillators to forest fires and competing populations, are nonlinear, spatially extended systems capable of spiking. Most investigations of excitable media consider situations where the amplifying and suppressing forces necessary for spiking coexist at every point in space. In this case, spiking requires a fine-tuned ratio between local amplification and suppression strengths. But, in Nature and engineered systems, these forces can be segregated in space, forming structures like interfaces and boundaries. Here, (AA) show how boundaries can generate and protect spiking if the reacting components can spread out: even arbitrarily weak diffusion can cause spiking at the edge between two non-excitable media. This edge spiking is a robust phenomenon that can occur even if the ratio between amplification and suppression does not allow spiking when the two sides are homogeneously mixed. >> ️

Colin Scheibner, Hillel Ori, et al. Spiking at the edge. arXiv:2304.06940v1 [cond-mat.soft]. Apr 14, 2023. 


Keywords: gst, excitable media, weak, spike, edge spiking  




giovedì 2 marzo 2023

# gst: when science meets poetry, an image of three-dimensional stepped cracks (bistability, and their transition to simple cracks)


<< Slow cracks may be simple, with no internal structure. The leading edge of a simple crack, the crack front, forms a single fracture plane in its wake. Slow cracks may also develop segmented crack fronts, each segment propagating along a separate fracture plane. These planes merge at locations that form steps along fracture surfaces. Steps are not stationary, but instead propagate within a crack front. Real-time measurements of crack front structure and energy flux reveal that step dynamics significantly increase energy dissipation and drastically alter crack dynamics. Simple and stepped cracks are each stable. By extending the use of energy balance to include 3D crack front structure, (AA) find that, while energy balance is obeyed, it is insufficient to select the energetically favorable crack growth mode. Transitions from stepped cracks to simple cracks occur only when their in-plane front lengths become equal and a perturbation momentarily changes step topology. Such 3D crack dynamics challenge our traditional understanding of fracture. >>

Meng Wang, Mokhtar Adda-Bedia, Jay Fineberg. Dynamics of three-dimensional stepped cracks, bistability, and their transition to simple cracks. Phys. Rev. Research 5, L012001. Jan 9, 2023. 

Also

keyword 'crack' in FonT

keyword 'rottura' | 'crepa' | 'frattura' | 'rugosa' in Notes
(quasi-stochastic poetry)




keywords 'meets poetry' in FonT

Keywords:  gst, transitions, dynamical phase transitions, crack, cracking,   fracture, roughness





lunedì 11 aprile 2022

# gst: apropos of instabilities, viscoelastic liquid bridges can be destabilized by torsion.

<< Liquid bridges are formed when liquids are constrained between two (or more) surfaces via the capillary force. They appear in a wide range of contexts including biology, medicine, and engineering. In the context of biology, liquid bridges enable animals like geckos to adhere to vertical walls (..) >>

<< By experiment and simulation, (AA) report that viscoelastic liquid bridges made of constant viscosity elastic liquids, a.k.a. Boger fluids, can be effectively destabilized by torsion. Under torsion, the deformation of the liquid bridge depends on the competition between elastocapillarity and torsion-induced normal stress effects. When the elastocapillary effect dominates, the liquid bridge undergoes elastocapillary instability and thins into a cylindrical thread, whose length increases and whose radius decays exponentially over time. When the torsion-induced normal stress effect dominates, the liquid bridge deforms in a way similar to edge fracture, a flow instability characterized by the sudden indentation of the fluid's free surface when a viscoelastic fluid is sheared at above a critical deformation rate. The vertical component of the normal stress causes the upper and lower portions of the liquid bridge to approach each other, and the radial component of the normal stress results in the liquid bridge thinning more quickly than under elastocapillarity. Whether such quick thinning continues until the bridge breaks depends on both the liquid bridge configuration and the level of torsion applied. >>️

San To Chan, Stylianos Varchanis, et al. Torsional instability of constant viscosity elastic liquid bridges. Soft Matter, 2022,18, 1965-1977. doi: 10.1039/ D1SM01804C. Feb 7, 2022. 



Also

keyword 'instability' | 'instabilities' in FonT



keyword 'instabile' in Notes (quasi-stochastic poetry)


keyword 'torsione' in Notes (quasi-stochastic poetry)


keywords: instability, torsion, torsional instability, viscoelastic liquid, bridge







sabato 20 novembre 2021

# gst: predict the wetting of the wedge; why do the teapots always drip?

<<  The "teapot effect" has been threatening spotless white tablecloths for ages: if a liquid is poured out of a teapot too slowly, then the flow of liquid sometimes does not detach itself from the teapot, finding its way into the cup, but dribbles down at the outside of the teapot. >>

<< This phenomenon has been studied scientifically for decades—now a research team at TU Wien has succeeded in describing the "teapot effect" completely and in detail with an elaborate theoretical analysis and numerous experiments: An interplay of different forces keeps a tiny amount of liquid directly at the edge, and this is sufficient to redirect the flow of liquid under certain conditions. >>

<< Although this is a very common and seemingly simple effect, it is remarkably difficult to explain it exactly within the framework of fluid mechanics,  (..) We have now succeeded for the first time in providing a complete theoretical explanation of why this drop forms and why the underside of the edge always remains wetted, >>  Bernhard Scheichl.

<< The sharp edge on the underside of the teapot beak plays the most important role: a drop forms, the area directly below the edge always remains wet. The size of this drop depends on the speed at which the liquid flows out of the teapot. If the speed is lower than a critical threshold, this drop can direct the entire flow around the edge and dribbles down on the outside wall of the teapot. >>

<< The mathematics behind it is complicated—it is an interplay of inertia, viscous and capillary forces. The inertial force ensures that the fluid tends to maintain its original direction, while the capillary forces slow the fluid down right at the beak. The interaction of these forces is the basis of the teapot effect. However, the capillary forces ensure that the effect only starts at a very specific contact angle between the wall and the liquid surface. The smaller this angle is or the more hydrophilic (i.e. wettable) the material of the teapot is, the more the detachment of the liquid from the teapot is slowed down. >>

<< Interestingly, the strength of gravity in relation to the other forces that occur does not play a decisive role. Gravity merely determines the direction in which the jet is directed, but its strength is not decisive for the teapot effect. The teapot effect would therefore also be observed when drinking tea on a moon base, but not on a space station with no gravity at all. >>️

Why teapots always drip. Vienna University of Technology. Nov 08, 2021


Scheichl, B., Bowles, R., & Pasias, G. (2021). Developed liquid film passing a smoothed and wedge-shaped trailing edge: Small-scale analysis and the ‘teapot effect’ at large Reynolds numbers. Journal of Fluid Mechanics, 926, A25. doi: 10.1017/jfm.2021.612. Sep 8, 2021. 


keywords: gst, teapot effect, interfacial flows, thin films, boundary layers, Reynolds number, viscosity, viscous–inviscid interaction